

AFRL-RY-WP-TR-2015-0183

CLOUD INTRUSION DETECTION AND REPAIR
(CIDAR)

Stelios Sidiroglou, Jeff Perkins, and Martin Rinard

Massachusetts Institute of Technology Computer Science and Artificial
Intelligence Laboratory

FEBRUARY 2016
Final Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public
Affairs Office (PAO) and is available to the general public, including foreign nationals. Copies may
be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RY-WP-TR-2015-0183 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

// Signature// // Signature//

PHILIP D. MUMFORD DAVID G. HAGSTROM, Chief
Program Engineer Avionics Vulnerability Mitigation Branch
Avionics Vulnerability Mitigation Branch Spectrum Warfare Division
Spectrum Warfare Division

// Signature//
TODD A KASTLE, Division Chief
Spectrum Warfare Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

February 2016 Final 30 September 2011 – 30 September 2015
4. TITLE AND SUBTITLE

CLOUD INTRUSION DETECTION AND REPAIR (CIDAR)
5a. CONTRACT NUMBER

FA8650-11-C-7192
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Stelios Sidiroglou, Jeff Perkins, and Martin Rinard
5d. PROJECT NUMBER

3000
5e. TASK NUMBER

YW
5f. WORK UNIT NUMBER

 Y0PM
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER
Massachusetts Institute of Technology Computer Science and Artificial
Intelligence Laboratory
32 Vassar St, Cambridge, MA 02139

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
 AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

Defense Advanced Research
Projects Agency
(DARPA/I2O)
675 North Randolph Street
Arlington, VA 22203-2114

AFRL/RYW
11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

 AFRL-RY-WP-TR-2015-0183

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display or disclose the
work. PAO case number 88ABW-2015-5735, Clearance Date 1 December 2015. Report contains color. The material is based on
research sponsored by Air Force Research Laboratory (AFRL) and the Defense Advanced Research Agency (DARPA) under
agreement number FA8650-11-C-7192. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes not withstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force
Research Laboratory (AFRL) and the Defense Advanced Research Agency (DARPA) or the U.S. Government.

14. ABSTRACT
Despite decades of effort, defect triage and correction remains a central concern in software engineering. Indeed, modern software
projects contain so many defects, and the cost of correcting defects remains so large, that projects typically ship with a long list of
known but uncorrected defects. Consequences of this unfortunate situation include pervasive security vulnerabilities and the
diversion of resources that would be better devoted to other, more productive, activities. The goal of this research is to automate the
process of discovering, neutralizing and repairing software bugs and vulnerabilities. As part of this goal, we build components of a
continuous automatic improvement system that can automatically search for errors and generate patches that repair the encountered
errors. By removing the human from the loop, patch generation time can be reduced, patch robustness improved, leading to fewer
unpatched systems. The systems that we developed during this program lay the foundation for future automatic program repair
systems that can significantly reducing the time and effort required to deal with software defects.

15. SUBJECT TERMS
software protection, automatic program repair, software bug finding, automatic input rectification

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT:

SAR

8. NUMBER OF
PAGES
 118

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Philip Mumford
19b. TELEPHONE NUMBER (Include Area Code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

Table of Contents
Section Page

1 Summary 1

2 Methods, Assumptions and Procedures 2

3 Introduction 3
3.1 Vulnerability Discovery ... 3
3.2 Vulnerability Isolation and Neutralization .. 5
3.3 Repair ... 6

4 Automatic Input Rectification 8
4.1 Input Rectification ... 8
4.2 Potential Advantages of Automatic Input Rectification 9
4.3 The Input Rectification Technique .. 10
4.4 Nested Fields in Input Files .. 11
4.5 Key Questions ... 11
4.6 Understanding Rectification Effects ... 13
4.7 Contributions ... 15
4.8 Motivating Example ... 15
4.9 Design ... 17
4.10 Implementation .. 23
4.11 Quantitative Evaluation ... 23

5 Sound Input Filter Generation 29
5.1 Static Analysis ... 29
5.2 SIFT Usage Model ... 30
5.3 Experimental Results .. 31
5.4 Contributions ... 32
5.5 Example ... 33
5.6 Static Analysis .. 37
5.7 Implementation .. 44
5.8 Experimental Results ... 46

6 DIODE 54
6.1 Example ... 62

i
Approved for public release; distribution unlimited.

6.2 Goal-Directed Conditional Branch Enforcement Algorithm 67

7 CodePhage 81
7.1 The Code Phage (CP) Code Transfer System 81
7.2 Example ... 86
7.3 Design and Implementation ... 92
7.4 Experimental Results ... 99

8 Conclusion 105

ii
Approved for public release; distribution unlimited.

List of Figures
Figure Page

1 Overview of CIDER’s Approach to Self-Healing Systems 4
2 An example image truncated by the rectification. 8
3 An example image twisted by the rectification 11
4 An example image whose color is changed by the rectification. . . 14
5 The code snippet of Dillo libpng callback (png.c). Highlighted

code is the root cause of the overflow bug .. 16
6 The architecture of automatic input rectification system. 16
7 An example of syntax parse tree .. 19
8 A subset of constraints generated by SOAP for PNG image files. . 20
9 SOAP result summary 24
10 Benchmarks and numerical results of SOAP experiment 24
11 Average data loss percentage curves under different sizes of

training .. 27
12 The SIFT architecture .. 29
13 Simplified Swfdec source code. Input statement annotations

appear in comments. .. 34
14 The symbolic expression set S for the Swfdec example. Each ex-

pression of S is a bit vector expression. The superscript indicates

the bit width of each expression atom. “sext(v, w)" is the signed
extension operation that transforms the value v to the bit width w. . 35

15 The Core Programming Language ... 37
16 Symbolic Expression Sets ... 38
17 Weakest precondition analysis rules. The notation S[ea/eb] de-

notes the symbolic expression set obtained by replacing every
occurrence of eb in S with ea ... 38

18 Normalization function norm(e). Atom(e) iterates over the atoms
in the expression e from left to right. .. 41

19 Procedure Call Analysis Algorithm ... 43
20 The number of distinct input fields and the number of relevant

input fields for analyzed input formats. For Swfdec the second
column shows the number of distinct fields in embedded JPEG
images in collected SWF files. ... 47

21 Static Analysis and Filter Generation Results 48
22 Generated Filter Results. ... 50

iii
Approved for public release; distribution unlimited.

23 The simplified source code from Dillo and libpng with annota-
tions inside comments. ... 51

24 The symbolic expression set S in the bit vector form for VLC,
Swftools-png2swf, Swftools-jpeg2swf, Dillo and GIMP. The
superscript indicates the bit width of each expression atom.
“sext(v, w)" is the signed extension operation that transforms
the value v to the bit width w ... 54

25 System Overview .. 54
26 Simplified source code from Dillo 2.1 and libpng 61
27 Syntax .. 67
28 Semantics of Arithmetic Expressions .. 68
29 Small-Step Operational Semantics of Statements 69
30 Small-Step Operational Semantics of Sequences 70
31 Goal-Directed Conditional Branch Enforcement 72
32 Branch Condition Compression .. 73
33 (Simplified) CWebP Overflow Error .. 87
34 (Simplified) FEH Overflow Check .. 88
35 Patch Transfer .. 89
36 High-level overview of CP’s components .. 92
37 CP Rewrite Rules for Bit Manipulation Operations 95
38 CP Data Structure Traversal Algorithm ... 98
39 CP Rewrite Algorithm .. 98
40 Summary of CP Experimental Results ... 99

iv
Approved for public release; distribution unlimited.

List of Tables
Table Page

1 Target Site Classification ... 76
2 Evaluation Summary .. 77

v
Approved for public release; distribution unlimited.

1 Summary

Despite decades of effort, defect triage and correction remains a central concern
in software engineering. Indeed, modern software projects contain so many
defects, and the cost of correcting defects remains so large, that projects typically
ship with a long list of known but uncorrected defects. Consequences of this
unfortunate situation include pervasive security vulnerabilities and the diversion
of resources that would be better devoted to other, more productive, activities.

The goal of this research is to automate the process of discovering, neutralizing
and repairing software bugs and vulnerabilities. As part of this goal, we build
components of a continuous automatic improvement system that can automat-
ically search for errors and generate patches that repair the encountered errors.
By removing the human from the loop, patch generation time can be reduced,
patch robustness improved, leading to fewer unpatched systems.

The systems that we developed during this program lay the foundation for future
automatic program repair systems that can significantly reducing the time and
effort required to deal with software defects.

1
Approved for public release; distribution unlimited.

2 Methods, Assumptions and Procedures

For all the research we performed in this program, we adopted an experimental
approach. We chose to evaluate our developed systems on realistic real-world ap-
plications and formats to better understand their direct applicability to complex
systems. All of the systems that we developed run on open source infrastructure
(e.g., Linux) and do not require proprietary software to build and run. We made
part of our software available for download via the Internet.

In general, we observed the results we obtained and the general process of ob-
taining these results and used them to drive further development. We also iden-
tified any weaknesses or missing pieces and worked towards remedying the
weaknesses and filling in any missing pieces.

During the course of the project we devoted a major effort to integrating and
evaluating the various different components. Our integration efforts focused on
developing software to connect the different components. Once the software
was developed we tested it and updated it as the tests indicated was necessary.
We evaluated our techniques by applying them to different exploits. During this
process we observed any deficiencies and developed techniques that addressed
thesedeficiencies.

2
Approved for public release; distribution unlimited.

3 Introduction

Software errors and vulnerabilities in server applications are a significant prob-
lem for preserving system integrity and availability. The accepted wisdom is to
use a multitude of tools, such as diligent software development strategies, dy-
namic bug finders and static analysis tools in an attempt to eliminate as many
bugs as possible.

However, experience has shown that it is very hard to achieve bug-free software.
As a result, even under the best of circumstances, buggy software is deployed
and developers face a constant and time-consuming battle of creating and re-
leasing patches fast enough to fix newly discovered bugs. Patches can take days
if not weeks to create, and it is not uncommon for systems to continue running
unpatched applications long after an exploit of a bug has become well-known.

The goal of this research is to automate the process of discovering, neutralizing
and repairing software bugs and vulnerabilities. In other words, to build a con-
tinuous automatic improvement systems that can automatically search for errors
and generate patches that repair the encountered errors. By removing the human
from the loop, patch generation time can be reduced, patch robustness improved,
leading to fewer unpatched systems.

Our approach towards building continuous automatic improvement systems,
revolves around three core thrusts as shown in Figure 1:

• Vulnerability Discovery

• Vulnerability Isolation and Neutralization

• Vulnerability Repair

3.1 Vulnerability Discovery

Previous techniques such as Fuzzing [15, 17] and concolic execution [46, 26,
36, 27] have been shown to be effective in discovering errors in the initial input
parsing stages of computations, but have had little to no success in exposing
errors that lie deep within the program.

As part of our research in automating vulnerability discovery we have researched
and developed, under the CIDER project, a new technique and system, DIODE

3
Approved for public release; distribution unlimited.

Figure 1: Overview of CIDER’s Approach to Self-Healing Systems

(Directed Integer Overflow Discovery Engine) [52], for automatically generating
inputs that trigger integer overflow errors at critical sites. DIODE starts with a
target site (such as a memory allocation site) and a target value (such as the size
of the allocated memory block). It then uses symbolic execution to obtain an
target expression that characterizes how the program computes the target value
as a function of the input. It then transforms the target expression to obtain a
target constraint. If the input 1) satisfies the target constraint while 2) causing the
program to execute the target site, then it will trigger the error.

DIODE shows that discovering and targeting specific potentially vulnerable
program sites can effectively expose such deep errors. One of the keys to success
is new techniques that work appropriately with sanity and blocking checks to
obtain inputs that can successfully traverse these obstacles to reach the target site.
The success of DIODE in exposing integer overflow vulnerabilities opens up the
field to the further development of other targeted techniques that work effectively
with sanity and blocking checks to expose deep errors.

DIODE works with off-the-shelf, production x86 binaries. Our results show
that, for our benchmark set of applications, and for every target memory alloca-

Discover

DIODE

CodePhage MRC

SOAP
RCV

SIFT
Repair Neutralize

4
Approved for public release; distribution unlimited.

tion site exercised by our seed inputs (which the applications process correctly
with no overflows), either 1) DIODE is able to generate an input that triggers an
overflow at that site or 2) there is no input that would trigger an overflow for the
observed target expression at that site.

3.2 Vulnerability Isolation and Neutralization

Errors and security vulnerabilities in software often occur in infrequently exe-
cuted program paths triggered by atypical inputs. A standard way to ameliorate
this problem is to use an anomaly detector that filters out such atypical inputs.
The goal is to ensure that the program is only presented with standard inputs
that it is highly likely to process without errors. A drawback of this technique is
that it can filter out desirable, benign, but atypical inputs along with the atypical
malicious inputs, thereby denying the user access to useful inputs.

We propose a new technique, automatic input rectification. Instead of rejecting
atypical inputs, the input rectifier modifies the input so that it is typical, then
presents the input to the application, which then processes the input. We have
three goals: a) present typical inputs (which the application is highly likely to
process correctly) to the application unchanged, b) render any malicious inputs
harmless by eliminating any atypical input features that may trigger errors or
security vulnerabilities, while c) preserving most, if not all, of the desirable
behavior for benign atypical inputs. A key empirical observation that motivates
our technique is the following:

Production software is usually tested on a large number of inputs. Standard
testing processes ensure that the software performs acceptably on such inputs.
We refer to such inputs as typical inputs and the space of such typical inputs as
the comfort zone [51] of the application. On the other hand, inputs designed to
exploit security vulnerabilities (i.e., malicious inputs) often lie outside the
comfort zone. If the rectifier is able to automatically detect inputs that lie outside
the comfort zone and map these inputs to corresponding meaningfully close
inputs within the comfort zone, then it is possible to a) prevent attackers from
exploiting the vulnerability in the software while b) preserving the ability of the
user to access desirable data in atypical inputs (either benign or malicious).

We present two systems for implementing automatic input rectification: SOAP [41]
and SIFT [43].

5
Approved for public release; distribution unlimited.

SOAP (Sanitization Of Anomalous inPuts), is an automatic input rectification
system designed to prevent overflow vulnerabilities and other memory address-
ing errors. SOAP first learns a set of constraints over typical inputs that char-
acterize a comfort zone for the application that processes those inputs. It then
takes the constraints and automatically generates a rectifier that, when provided
with an input, automatically produces another input that satisfies the constraints.
Inputs that already satisfy the constraints are passed through unchanged; inputs
that do not satisfy the constraints are modified so that they do.

SOAP is a reactive system that has some drawbacks such as incomplete coverage
and does not protect the application until it is attacked. SIFT is a proactive sys-
tem, SIFT, for generating filters that discard inputs that may cause integer over-
flow errors at memory allocation and block copy sites. Unlike previous reactive
systems, SIFT proactively analyzes the program before it executes to generate
filters that take all execution paths into consideration. SIFT can therefore nullify
exploits that target unknown vulnerabilities (i.e., zero-day attacks).

The combination of SOAP and SIFT provides support for applying automatic in-
put rectification for systems statically (where access to source code is available)
and dynamically.

3.3 Repair

Despite decades of effort, defect triage and correction remains a central concern
in software engineering. Indeed, modern software projects contain so many
defects, and the cost of correcting defects remains so large, that projects typically
ship with a long list of known but uncorrected defects. Consequences of this
unfortunate situation include pervasive security vulnerabilities and the diversion
of resources that would be better devoted to other, more productive, activities.
Automatic program repair holds out the promise of significantly reducing the
time and effort required to deal with software defects.

Under the CIDER project, we developed three automatic repair systems: Code-
Phage [59], RCV [44], and SPR [42].

Code Phage (CP), a system for automatically transferring correct code from
donor applications into recipient applications that process the same inputs to suc-
cessfully eliminate errors in the recipient. Because CP works with binary donors
with no need for source code or symbolic information, it supports a wide range

6
Approved for public release; distribution unlimited.

of use cases. To the best of our knowledge, CP is the first system to automati-
cally transfer code across multiple applications.

RCV, for enabling software applications to survive divide-by-zero and null-
dereference errors. RCV operates directly on off-the-shelf, production, stripped
x86 binary executables. RCV implements recovery shepherding, which attaches
to the application process when an error occurs, repairs the execution, tracks the
repair effects as the execution continues, contains the repair effects within the
application process, and detaches from the process after all repair effects are
flushed from the process state. RCV therefore incurs negligible overhead during
the normal execution of the application.

SPR, a new program repair system that uses a novel staged program repair strat-
egy to efficiently search a rich search space of candidate repairs. Three key tech-
niques work synergistically together to enable SPR to generate successful repairs
for a range of software defects. Together, these techniques enable SPR to gen-
erate correct repairs for over five times as many defects as previous systems
evaluated on the same benchmark sets

7
Approved for public release; distribution unlimited.

4 Automatic Input Rectification

Errors and security vulnerabilities in software often occur in infrequently exe-
cuted program paths triggered by atypical inputs. A standard way to ameliorate
this problem is to use an anomaly detector that filters out such atypical inputs.
The goal is to ensure that the program is only presented with standard inputs
that it is highly likely to process without errors. A drawback of this technique is
that it can filter out desirable, benign, but atypical inputs along with the atypical
malicious inputs, thereby denying the user access to useful inputs.

4.1 Input Rectification

(a) The original image

(b) The rectified image

Figure 2: An example image truncated by the rectification.

8
Approved for public release; distribution unlimited.

We propose a new technique, automatic input rectification. Instead of rejecting
atypical inputs, the input rectifier modifies the input so that it is typical, then
presents the input to the application, which then processes the input. We have
three goals: a) present typical inputs (which the application is highly likely to
process correctly) to the application unchanged, b) render any malicious inputs
harmless by eliminating any atypical input features that may trigger errors or
security vulnerabilities, while c) preserving most, if not all, of the desirable
behavior for benign atypical inputs. A key empirical observation that motivates
our technique is the following:

Production software is usually tested on a large number of inputs. Standard
testing processes ensure that the software performs acceptably on such inputs.
We refer to such inputs as typical inputs and the space of such typical inputs as
the comfort zone [51] of the application. On the other hand, inputs designed to
exploit security vulnerabilities (i.e., malicious inputs) often lie outside the
comfort zone. If the rectifier is able to automatically detect inputs that lie outside
the comfort zone and map these inputs to corresponding meaningfully close
inputs within the comfort zone, then it is possible to a) prevent attackers from
exploiting the vulnerability in the software while b) preserving the ability of the
user to access desirable data in atypical inputs (either benign or malicious).

We present SOAP (Sanitization Of Anomalous inPuts), an automatic input rec-
tification system designed to prevent overflow vulnerabilities and other memory
addressing errors. SOAP first learns a set of constraints over typical inputs that
characterize a comfort zone for the application that processes those inputs. It
then takes the constraints and automatically generates a rectifier that, when pro-
vided with an input, automatically produces another input that satisfies the con-
straints. Inputs that already satisfy the constraints are passed through unchanged;
inputs that do not satisfy the constraints are modified so that they do.

4.2 Potential Advantages of Automatic Input Rectification

Input rectification has several potential advantages over simply rejecting mali-
cious or atypical inputs that lie outside the comfort zone:

• Desirable Data in Atypical Benign Inputs: Anomaly detectors filter
out atypical inputs even if they are benign. The result is that the user is
completely denied access to data in atypical inputs. Rectification, on the

9
Approved for public release; distribution unlimited.

other hand, passes the rectified input to the application for presentation
to the user. Rectification may therefore deliver much or even all of the
desirable data present in the original atypical input to the user.

• Desirable Data in Malicious Inputs: Even a malicious input may contain
data that is desirable to the user. Common examples include videos and
web pages with embedded malicious content. Rectification may eliminate
the exploits while preserving much of the desirable input from the orig-
inal input. In this case the rectifier enables the user to safely access the
desirable data in the malicious input.

• Error Nullification: Even if they are not malicious, atypical inputs may
expose errors that prevent the application from processing them success-
fully. In this case rectification may nullify the errors so that the application
can deliver most if not all of the desirable data in the input to the user.

4.3 The Input Rectification Technique

SOAP operates on the parse tree of an input, which divides the input into a col-
lection of (potentially nested) fields. Each field may contain an integer value, a
string, or unparsed raw data bytes. SOAP infers and enforces 1) upper bound
constraints on the values of integer fields, 2) constraints that capture whether or
not an integer field must be non-negative, 3) upper bound constraints on the
lengths of string or raw data byte fields, and 4) field length indicator constraints
that capture relationships between the values of integer fields and the lengths of
string or raw data fields.

The dynamic taint analysis [28, 49, 35] engine of SOAP first identifies input
fields that are related to critical operations during the execution of the applica-
tion such as memory allocations and memory writes. The learning engine of
SOAP then automatically infers constraints on these fields based on a set of train-
ing inputs. When presented with an atypical input that violates these constraints,
the rectifier of SOAP automatically modifies input fields iteratively until all of
the constraints are satisfied.

10
Approved for public release; distribution unlimited.

(a) The original image

(b) The rectified image

Figure 3: An example image twisted by the rectification

4.4 Nested Fields in Input Files

One of the key challenges in input rectification is the need to deal with nested
fields. In general, input formats are in tree structures containing arbitrarily
nested fields. Inferring correlated constraints is hard, because our algorithm
must consider relationships of multiple fields at different levels in the tree.

Nested input fields also complicate the rectification. Changing one field may
cause the file to violate constraints associated with enclosing fields. To produce a
consistent rectified input, the rectifier must therefore apply a cascading sequence
of modifications to correlated constraints as its constraint enforcement actions
propagate up or down the tree of nested fields.

4.5 Key Questions

We identify several key questions that are critical to the success of the input
rectificationtechnique:

• Learning: Is it possible to automatically learn an effective set of con-
straints from a set of typical non-malicious or benign inputs?

• Rectification Percentage: Given a set of learned constraints, what per-
centage of previously unseen benign inputs fail to satisfy the constraints
and will therefore be modified by the rectifier?

11
Approved for public release; distribution unlimited.

• Rectification Quality: What is the overall quality of the outputs that the
application produces when given benign inputs that the rectifier has modi-
fied to conform to the constraints?

• Security: Does the rectifier effectively protect the application against
inputs that exploit errors and security vulnerabilities?

We investigate these questions by applying SOAP to rectify inputs for five large
software applications. The input formats of these applications include three im-
age types (PNG, TIFF, JPEG), wave sound (WAV) and Shockwave flash video
(SWF). We evaluate the effectiveness of our rectifier by performing the follow-
ing experiments:

• Input Acquisition: For each application, we acquire a set of inputs from
the Internet.

• Benign Input Acquisition: We run each application on each input in its
set and filter out any inputs that cause the application to crash. The result-
ing set of inputs is the benign inputs. Because all of our applications are
able to process all of the inputs without errors, the set of benign inputs is
the same as the original set.

• Training and Test Inputs: We next randomly divide the inputs into two
sets: the training set and the test set.

• Potentially Malicious Inputs: We search the CVE security database [2]
and previous security papers to obtain malicious inputs designed to trigger
errors in the applications.

• Learning: We use the training set to automatically learn the set of con-
straints that characterize the comfort zone of the application.

• Atypical Benign Inputs: For each application, we next compute the per-
centage of the benign inputs that violate at least one of the learned con-
straints. We call such inputs atypical benign inputs. For our set of applica-
tions, the percentage of atypical benign inputs ranges from 0% to 1.57%.

• Quality of Rectified Atypical Inputs: We evaluate the quality of the recti-
fied atypical inputs by paying people on Amazon Mechanical Turk [1] to
evaluate their perception of the difference between 1) the output that the
application produces when given the original input and 2) the output that
the application produces when given the rectified version of the original
input. Specifically, we paid people to rank the difference on a scale from 0
to 3, with 0 indicating completely different outputs and 3 indicating no per-
ceived difference. The average scores for over 75% of the atypical inputs
are greater than 2.5, indicating that Mechanical Turk workers perceive the

12
Approved for public release; distribution unlimited.

outputs for the original and rectified inputs to be very close.
• Security Evaluation: We verified that the rectified versions of malicious

inputs for each of these applications were processed correctly by the appli-
cation.

• Manual Code Analysis: For each of the malicious inputs, we manually
identify the root cause of the vulnerability that the malicious input ex-
ploited. We then examined the set of learned constraints and verified that
if an input satisfies the constraints, then it will not be able to exploit the
vulnerabilities.

4.6 Understanding Rectification Effects

We examined the original and rectified images or videos for all test input files
that the rectifier modified. All of these files are available at:

https://sites.google.com/site/inputrectification/home

For the majority of rectified inputs (83 out of 110 inputs), the original and recti-
fied images or videos appear identical. The average Mechanical Turk rating for
such images or videos was between 2.5 and 3.0. We attribute this phenomenon
to the fact that the rectifier often modifies fields (such as the name of the author
of the file) that are not relevant to the core functionality of the application and
therefore do not visibly change the image or video presented to the user. The
application must nevertheless parse and process these fields to obtain the desir-
able data in the input file. Furthermore, since these fields are often viewed as
tangential to the primary purpose of the application, the code that parses them
may be less extensively tested and therefore more likely to contain errors.

Figure 2, 3 and 4 show examples of image files that are visibly changed by rec-
tification. For some of the rectified image inputs (8 of 53 image inputs), the
rectifier truncates part of the image, leaving a strip along the bottom of the pic-
ture (see Figure 2). For the remaining inputs (19 of 110), the rectifier changes
fields that control various aspects of core application functionality, for example,
the alignment between pixels and the image size (see Figure 3), the color of the
image (see Figure 4), or interactive aspects of videos. The average Mechanical
Turk rating for such images or videos varied depending on the severity of the
effect. In all cases the application was able to successfully process the rectified
inputs without error to present the remaining data to the user.

13
Approved for public release; distribution unlimited.

(a) The original image

(b) The rectified image

Figure 4: An example image whose color is changed by the rectification.

14
Approved for public release; distribution unlimited.

4.7 Contributions

We make the following contributions:

• Basic Concept: We propose a novel technique for dealing with anomalous
and potentially malicious inputs, namely, automatic input rectification, and
an prototype implementation, SOAP, which demonstrates the effectiveness
of the technique.

• Constraint Inference: We show how to use dynamic taint analysis and a
constraint inference algorithm to automatically infer safety constraints.
This constraint inference algorithm operates correctly to infer correlated
constraints for hierarchically structured input files with nested fields.

• Rectification Algorithm: We present an input rectification algorithm that
systematically enforces safety constraints on inputs while preserving as
much of the benign part of the input as possible. Because it is capable of
enforcing correlated constraints associated with nested input fields, this
algorithm is capable of rectifying hierarchically structured input files.

4.8 Motivating Example

Figure 5 presents source code from Dillo 2.1, a lightweight open source web
browser. Dillo uses libpng to process PNG files. The libpng callback function
Png_datainfo_callback() shown in Figure 5 is called when Dillo starts to load
a PNG file. The function contains an integer overflow bug at line 20, where
the multiplication calculates the size of the image buffer allocated for future
callbacks. Because png→rowbytes is proportional to the image width, arith-
metic integer overflow will occur when opening a PNG image with maliciously
large width and height values. This error causes Dillo to allocate a significantly
smaller buffer than required.

Dillo developers are well aware of the potential for overflow errors. In fact, the
code contains a check of the image size at lines 10-11 to block large images. Un-
fortunately, their bound check has a similar integer overflow problem. Specific
large width and height values can also cause an overflow at line 10, and thus
bypass the check. To nullify the above Dillo error, SOAP performs following
steps:

• Understand Input Format: SOAP first parses a PNG image file into a

15
Approved for public release; distribution unlimited.

1 //Dillo’s libpng callback
2 static void
3 Png_datainfo_callback(png_structp png_ptr, ...)
4 {
5 DilloPng *png;
6 ...
7 png = png_get_progressive_ptr(png_ptr);
8 ...
9 /* check max image size */

10 if (abs(png→width*png→height) >
11 IMAGE_MAX_W * IMAGE_MAX_H) {
12 ...
13 Png_error_handling(png_ptr, "Aborting...");
14 ...
15 }
16 ...

17 png→rowbytes = png_get_rowbytes(png_ptr, info_ptr);
18 ...
19 png→image_data = (uchar_t *) dMalloc(

20 png→rowbytes * png→height);
21 ...
22 }

Figure 5: The code snippet of Dillo libpng callback (png.c). Highlighted code is
the root cause of the overflow bug.

Figure 6: The architecture of automatic input rectification system.

Training
Inputs Input

Parser

Training
Parse Trees

OFFLINE TRAINING
Execu2on Cri2cal
Monitor Fields

Learning
Engine

Security
Constraints

Incoming
Input

Input
Parse Trees

Input
Rec2fier

Rec2fied
Inputs Applica2on

16
Approved for public release; distribution unlimited.

collection of input fields (as shown in Figure 7), so that SOAP knows
which input bytes in the PNG image file correspond to the image width
and height in the above example.

• Identify Critical Fields: SOAP monitors the execution of Dillo to de-
termine that values in the image width and height fields flow into the
variables png→width and png→height. These two variables influence
a memory allocation statement at lines 19-20. Thus SOAP marks width
and height in PNG images as critical fields, which can potentially cause
dangerous overflow.

• Infer Constraints: SOAP next infers constraints over the critical fields.
Specifically, SOAP processes the benign training PNG images to use the
maximum image width and height values that appear in these inputs as
their upper bounds. Figure 8 presents more examples of constraints for
PNG images.

• Rectify Atypical Inputs: When it encounters an atypical input whose
width or length fields are larger than the inferred bound, SOAP enforces
the bound by changing the field to the inferred bound. Note that such
changes may, in turn, cause other constraints (such as the length of another
field involved in a correlated relation with the modified field) to be vio-
lated. SOAP therefore rectifies violated constraints until all constraints are
satisfied.

Both critical field identification and constraint inference are done offline. Once
SOAP generates safety constraints for the PNG format, it can automatically
rectify new incoming PNG images.

4.9 Design

SOAP has four components: the input parser, the execution monitor, the learn-
ing engine, and the input rectifier. The components work together cooperatively
to enable automatic input rectification (see Figure 6). The execution monitor and
the learning engine together generate safety constraints offline, before the input
rectifier is deployed:

• Input parser: The input parser understands input formats. It transforms
raw input files into syntactic parse trees for the remaining components to
process.

17
Approved for public release; distribution unlimited.

• Execution Monitor: The execution monitor uses taint tracing to analyze
the execution traces of an application. It identifies critical input fields that
influence sensitive operations including memory allocations and memory
writes.

• Learning Engine: The learning engine starts with a set of benign train-
ing inputs. It infers safety constraints based on the values of the fields in
these training inputs. Safety constraints define the comfort zone of the
application.

• Input Rectifier: The input rectifier rectifies atypical inputs to enforce
safety constraints. The rectification algorithm modifies the input iteratively
until it satisfies all constraints.

4.9.1 Input Parser

As shown in Figure 6, the input parser transforms an arbitrary input into a gen-
eral syntactic parse tree that can be easily consumed by the remaining compo-
nents. In the syntactic parse tree, only leaf fields are directly associated with
input data. Each leaf field has a type, which can be integer, string or raw bytes,
while each non-leaf field contains several child fields which together forms a
coarser semantic chunk. The parse tree also contains low-level specification
information, for example, how the input file encodes these values. The input
rectifier uses this information when modifying input fields.

Figure 7 presents an example of a leaf field inside a parse tree for a PNG im-
age file. The leaf field identifies the location of the data in the input file. It also
contains a descriptor that specifies various aspects of the field, such as the value
stored in the field, the name of the field, and the encoding information such as
whether the value is stored in big endian or little endian form. The input rectifier
uses this information in the descriptor when modifying the field.

As shown in Figure 7, the field name is similar to the path name in a file system,
which corresponds the position of the field inside the tree. Each field also stores
additional information to help the rectifier modify the input, including the endi-
anness, the encoding method and the offset position of corresponding bytes in
the input.

18
Approved for public release; distribution unlimited.

Figure 7: An example of syntax parse tree.

4.9.2 Execution Monitor

The execution monitor is responsible for identifying the critical input fields
that are involved in the learned constraints. Because large data fields may trig-
ger memory buffer overflows, the execution monitor treats all variable-length
data fields as critical. Integer fields present a more complicated scenario. Inte-
ger fields that influence the addresses of memory writes or the values used at
memory allocation sites (e.g., calls to malloc() and calloc()) are relevant for our
target set of errors. Other integer fields (for example, control bits or checksums)
may not affect relevant program actions.

The SOAP execution monitor uses dynamic taint analysis [28, 49] to compute
the set of critical integer fields. Specifically, SOAP considers an integer field to
be critical if the dynamic taint analysis indicates that the value of the field may
influence the address of memory writes or values used at memory allocation
sites. The execution monitor uses an automated greedy algorithm to select a
subset of the training inputs for the runs that determine the critical integer fields.
The goal is to select a small set of inputs that 1) minimize the execution time
required to find the integer fields and 2) together cover all of the integer fields
that may appear in the input files.

0000000110010000

Value: 400
Name: /header/width
Endianness: Big-•‐endian
…

Original input file Parse tree

… … …

…

19
Approved for public release; distribution unlimited.

1 /header/width <= 1920
2 /header/width >= 0
3 sizebits(/text/text) <= 21112

4 /text/size * 8 == sizebits(/text/keyword)
5 + sizebits(/text/text)

Figure 8: A subset of constraints generated by SOAP for PNG image files.

The execution monitor currently tracks data dependences only. This approach
works well for our set of applications, eliminating 58.3%-88.7% of integer fields
from consideration. It would be possible to use a taint system that tracks control
dependences [24] as well.

4.9.3 Learning Engine

The learning engine works with the parse trees of the training inputs and the
specification of critical fields as identified by the execution monitor. It uses this
information to infer safety constraints over critical fields (see offline training box
in Figure 6).

Safety Constraints: Overflow bugs are typically exploited by large data fields,
extreme values, negative entries or inconsistencies of multiple fields. SOAP
infers both bound constraints and length indicator constraints. Bound constraints
are associated with individual fields, which bound values of critical integer fields
and sizes of data fields in incoming inputs. Length indicator constraints (i.e.,
an integer field that indicates the actual length of a data field) are correlated
constraints associated with multiple fields.

Figure 8 presents several examples of constraints that SOAP infers for PNG
image files. Specifically, SOAP infers upper bounds of integer fields (line 1),
non-negativity of integer fields (line 2), upper bounds of lengths of data fields
(line 3), and length indicator constraints between values and lengths of parse tree
fields (lines 4-5 in Figure 8).

These constraints enable the rectification system to eliminate extreme values
in integer fields, overly long data fields, and inconsistencies between the spec-
ified and actual lengths of data fields in the input. When properly inferred and
enforced, these constraints enable the rectifier to nullify our target vulnerabilities
in the protected programs.

Note that once SOAP infers a set of safety constraints for one input format, it

20
Approved for public release; distribution unlimited.

may use these constraints to rectify inputs for any application that reads inputs
in that format. This is useful when multiple different applications are vulnerable
to the same exploit. For example, both Picasa [16] and ImageMagick [9] are
vulnerable to the same integer overflow exploit (see Section 4.11). A single
set of inferred constraints enables SOAP to nullify the vulnerability for both
applications.

Inferring Bound Constraints: SOAP infers three kinds of bound constraints:
upper bounds of lengths of data fields, upper bounds of integer fields, and whether
integer fields are non-negative. SOAP sets the maximum length of a data field
that appeared in training inputs as the upper bound of its length. SOAP sets the
maximum value of an integer field in training inputs as the upper bound of its
value. SOAP also sets an integer field to be non-negative if it is never negative in
all training inputs. SOAP infers all these constraints with a single traversal of the
parse tree of each training input.

Inferring Length Indicators: Inferring length indicator constraints is challeng-
ing, because of the presence of nested fields in hierarchical input format. For
example, an integer field may indicate the total length of several big fields which
recursively enclose many sub-fields. Moreover, such constraints may appear at
various levels in the input parse tree.

SOAP infers a length indicator field f which is associated with the total
length of consecutive children of the parent field of f . For instance, lines 4-
5 in Figure 8 present a length indicator constraint. The constraint states that
the value of “/text/size" is the total length of “/text/keyword" and
“/text/text", which are two consecutive children of “/text".

SOAP constraint learning algorithm first enumerates all possible field combi-
nations for length indicator constraints, and initially assumes that all of these
constraints are true. When processing each training input, the algorithm elimi-
nates constraints that do not hold in the input. Our algorithm can be extended to
infer other kinds of correlated constraints. More details and pseudo-code of our
learning algorithm can be found in our technical report [41].

4.9.4 Input Rectifier

Given safety constraints generated by the learning engine and a new input, the
input rectifier rectifies the input if it violates safety constraints (see Figure 6).

21
Approved for public release; distribution unlimited.

The main challenge in designing the input rectifier is enforcing safety constraints
while preserving as much desirable data as possible.

Our algorithm is designed around two principles: 1) It enforces constraints only
by modifying integer fields or truncating data fields—it does not change the
parse tree structure of the input. 2) At each step, it finds a single violated con-
straint and applies a minimum modification or truncation to satisfy the violated
constraint.

Nested input fields further complicate rectification, because changing one field
may cause the file to violate correlated constraints associated with enclosing or
enclosed fields at other levels. Thus our algorithm must iteratively continue the
rectification process until there are no more violated constraints. In our exper-
iment, SOAP enforces as many as five correlated constraints on some rectified
input files.

Our algorithm has a main loop that iteratively checks the input against learned
constraints. The main loop exits when the input no longer violates any safety
constraints. At each iteration, it applies various rectification actions depending
on the violated constraints:

• Upper bounds of integer fields: Our algorithm changes the value of an
integer field to the learned upper bound, if the input violates the upper
bound constraint of the field.

• Non-negativities of integer fields: Our algorithm changes the value of an
integer field to 0, if the input violates the non-negative constraint of the
field.

• Length upper bounds of data fields: Our algorithm truncates a data field
to its length upper bound, if the input violates the length upper bound
constraint of the data field.

• Length indicator constraints: Our algorithm changes the value of the
length indicator field to the actual length of the data field, if the value is
greater than the actual length. Our algorithm truncates the data fields to
the length indicated by the corresponding integer field, if the data is longer
than the indicated length. Note that the length indicator constraints may be
violated due to previous fixes for other constraints. Our algorithm cannot
increase the value of the length indicator field or increase the length of the
data field here, which will roll back previous fixes.

Note that, because the absolute values of integer fields and the lengths of data

22
Approved for public release; distribution unlimited.

fields always decrease at each iteration, this algorithm will always terminate.
Note also that, because the algorithm truncates a minimum amount of data each
iteration, the algorithm attempts to minimize the total amount of discarded data.
More details and pseudo-code of the rectification algorithm can be found in our
technical report [41].

Checksum: SOAP appropriately updates checksums after the rectification.
SOAP currently relies on the input parser to identify the fields that store check-
sums and the method used to compute checksums. After the rectification algo-
rithm terminates, SOAP calculates the new checksums and appropriately updates
checksum fields. It is also possible to use an more automatic checksum repair
technique [56].

4.10 Implementation

The SOAP learning engine and input rectifier are implemented in Python. The
execution monitor is implemented in C based on Valgrind [47], a dynamic binary
instrumentation framework. The input parser is implemented with Hachoir [8],
a manually maintained Python library for parsing binary streams in various
formats. SOAP is able to process any file format that Hachoir supports. Because
SOAP implements an extensible framework, it can work with additional parser
components that allow to support other input formats.

4.11 Quantitative Evaluation

We next present a quantitative evaluation of SOAP using five popular media
applications. Specifically, the following questions drive our evaluation:

1. Is SOAP effective in nullifying errors?

2. How much desirable data does rectification preserve?

3. How does the amount of training inputs affect SOAP’s ability to preserve
desirable data?

Applications and Errors: We use SOAP to rectify inputs for five applications:
Swfdec 0.5.5 (a shockwave player) [18], Dillo 2.1 (a lightweight browser) [4],

23
Approved for public release; distribution unlimited.

Application Sources Fault Format Position Related constraints
Swfdec Buzzfuzz X11 crash SWF XCreatePixMap /rect/xmax ≤ 57600

/rect/ymax ≤ 51000
Swfdec Buzzfuzz overflow/crash SWF jpeg.c:192 /sub jpeg/.../width ≤ 6020

/sub jpeg/.../height ≤ 2351
Dillo CVE-2009-2294 overflow/crash PNG png.c:142

png.c:203
/header/width ≤ 1920
/header/height ≤ 1080

ImageMagick CVE-2009-1882 overflow/crash JPEG,TIFF xwindow.c:5619 /ifd[..]/img_width/value ≤ 14764
/ifd[..]/img_height/value ≤ 24576

/start_frame/content/width ≤ 15941
/start_frame/content/height ≤ 29803

Picasa TaintScope overflow/crash JPEG,TIFF N/A

VLC CVE-2008-2430 overflow/crash WAV wav.c:147 /format/size ≤ 150

Figure 9: SOAP result summary

Rectification Statistics Running Time
Inp. App. Train Test Field (Distinct) Rectified Avg. Ploss Mean Parse Rect. Per field

SWF Swfdec 3620 3620 5550.2 (98.17) 57 (1.57%) N/A 531ms 443ms 88ms 0.096ms
PNG Dillo 1496 1497 306.8 (32.3) 0 (0%) 0% 23ms 19ms 4ms 0.075ms

JPEG IMK, Picasa 3025 3024 298.2 (75.5) 42 (1.39%) 0.08% 24ms 21ms 3ms 0.080ms
TIFF IMK, Picasa 870 872 333.5 (84.5) 11 (1.26%) 0.50% 31ms 26ms 5ms 0.093ms
WAV VLC 5488 5488 17.1 (16.8) 11 (0.20%) 0% 1.5ms 1.3ms 0.2ms 0.088ms

Figure 10: Benchmarks and numerical results of SOAP experiment

ImageMagick 6.5.2-8 (an image processing toolbox) [9], Google Picasa 3.5 (a
photo managing application) [16], and VLC 0.8.6h (a media player) [21].

Figure 9 presents a description of each error in each application. In sum, all of
these applications consume inputs that (if specifically crafted) may cause the
applications to incorrectly allocate memory or perform an invalid memory
access. The input file formats for these errors are the SWF Shockwave Flash
format; the PNG, JPEG, and TIF image formats; and the WAV sound format.

Malicious inputs: We obtained six input files from CVE database [2], Buzzfuzz
project [35] and TaintScope project [56]. Each input targets a distinct error (see
Figure 9) in at least one of these applications.

Benign inputs: We implemented a web crawler to collect input files for each for-
mat (see Figure 10 for the number of collected inputs for each input format). Our
web crawler uses Google’s search interface to acquire a list of pages that contain
at least one link to a file of a specified format (e.g., SWF, JPEG, or WAV). The
crawler then downloads each file linked within each page. We verified that all of
these inputs are benign, i.e., the corresponding applications successfully pro-
cessed these inputs. For each format, we randomly partitioned these inputs into

24
Approved for public release; distribution unlimited.

two sets, the training set and the test set (see Figure 10).

4.11.1 Nullifying Vulnerabilities

We next evaluate the effectiveness of SOAP in nullifying six vulnerabilities in
the benchmark applications (see Figure 9). We first applied the trained SOAP
rectifier to the obtained malicious inputs. The rectifier detected that all of these
inputs violated at least one safety constraint. It rectified all violated constraints
to produce six corresponding rectified inputs. We verified that the applications
processed the rectified inputs without error and none of the rectified inputs ex-
ploited the vulnerabilities. We next discuss the interactions between the inputs
and the root cause of each vulnerability.

Flash video: The root cause of the X11 crash error in Swfdec is a failure to
check for large Swfdec window sizes as specified in the input file. If this window
size is very large, the X11 library will allocate an extremely large buffer for the
window and Swfdec will eventually crash. SOAP nullifies this error by enforcing
the constraints that /rect/xmax ≤ 57600 and /rect/ymax ≤ 51000, which limit
the window to a size that Swfdec can handle. In this way, SOAP ensures that no
rectified input will be able to exploit this error in Swfdec.

The integer overflow bug in Swfdec occurs when Swfdec calculates the required
size of the memory buffer for JPEG images embedded within the SWF file.
If the SWF input file contains a JPEG image with abnormally large specified
width and height values, this calculation will overflow and Swfdec will allocate
a buffer significantly smaller than the required size. When SOAP enforces the
learned safety constraints, it nullifies the error by limiting the size of the embed-
ded image. No rectified input will be able to exploit this error.

Image: Errors in Dillo, ImageMagick and Picasa have similar root causes. A
large PNG image with crafted width and height can exploit the integer over-
flow vulnerability in Dillo (see Section 4.8). The same malicious JPEG and
TIFF images can exploit vulnerabilities in both ImageMagick and Picasa Photo
Viewer. ImageMagick does not check the size of images when allocating an
image buffer for display at magick/xwindow.c:5619 in function XMakeImage().
Picasa Photo Viewer also mishandles large image files [56]. By enforcing the
safety constraints, SOAP limits the size of input images and nullifies these vul-
nerabilities.

25
Approved for public release; distribution unlimited.

Sound: VLC has an overflow vulnerability when processing the format chunk of
a WAV file. The integer field /format/size specifies the size of the format chunk
(which is less than 150 in typical WAV files). VLC allocates a memory buffer to
hold the format chunk with the size of the buffer equal to the value of the field
/format/size plus two. A malicious input with a large value (such as 0xfffffffe)
in this field can exploit the overflow vulnerability. By enforcing the constraint
/format/size ≤ 150, SOAP limits the size of the format chunk in WAV file and
nullifies this vulnerability.

These results indicate that SOAP effectively nullifies all six vulnerabilities. Our
inspection of the source code indicates that the inferred safety constraints nullify
the root causes of all of the vulnerabilities so that no input, after rectification, can
exploit the vulnerabilities.

4.11.2 Data Loss

We next compute a quantitative measure of the effect of rectification on data
loss. For each input format, we first apply the SOAP rectifier to the test inputs.
We report the average data loss percentage of all test inputs for each format. We
use the following formula to compute the data loss percentage of each rectified
input:

Ploss =
Dlossi

Dtot i

Dtoti measures the amount of desirable data before rectification and Dlossi mea-
sures the amount of desirable data lost in the rectification process. For JPEG,
TIFF and PNG files, Dtoti is the number of pixels in the image and Dlossi is the
number of changed pixels after rectification. For WAV files, Dtoti is the num-
ber of frames in the sound file and Dlossi is the number of changed frames after
rectification. Because SWF files typically contain interactive content such as
animations and dynamic objects that respond to user inputs, we did not attempt
to develop a corresponding metric for these files.

Result Interpretation: Figure 10 presents rectification results of the test inputs
of each input format. First, note that the vast majority of the test inputs satisfy all
of the learned constraints and are therefore left unchanged by the rectifier. Note
also that both PNG and WAV have zero desirable data loss — PNG because the

26
Approved for public release; distribution unlimited.

3.5
3

2.5
2

1.5
1

0.5
0

JPEG

TIF

PNG

WAV

200 600 1000 1400 1800 2200 2600 3000
The number of training inputs

Figure 11: Average data loss percentage curves under different sizes of training

rectifier did not modify any test inputs, WAV because the modifications did not
affect the desirable data. For JPEG and TIFF, the average desirable data loss is
less than 0.5%.

One of the reasons that the desirable data loss numbers are so small is that rectifi-
cations often change fields (such as the name of the author of the data file or the
software package that created the data file) that do not affect the output presented
to the user. The application must nevertheless parse and process these fields to
obtain the desirable data in the input file.

4.11.3 Size of Training Input Set

We next investigate how the size of the training input set affects the effectiveness
of the rectification. Intuitively, we expect that using less training inputs will
produce more restrictive constraints which, in turn, cause more data loss in the
rectification. For each format, we incrementally increase the size of the training
input set and record the data loss percentage on the test inputs. At each step,
we increase the size of training input by 200. Figure 11 presents the curves of
the average data loss percentage of the test inputs of the different formats as the
sizes of the training input sets change.

As expected, the curves initially drop rapidly, then approach a limit as the train-
ing set sizes become large. Note that the PNG and WAV curves converge more
rapidly than the TIFF and JPEG curves. We attribute this phenomenon to the fact
that the PNG and WAV formats are simpler than the TIFF and JPEG formats (see

Av
er

ag
e

da
ta

 lo
ss

pe

rc
en

ta
ge

27
Approved for public release; distribution unlimited.

Figure 10 for the number of semantically distinct fields of each format).

4.11.4 Overhead

We next evaluate the overhead introduced by SOAP. Figure 10 presents the
average running time of the SOAP rectifier for processing the test inputs of each
file format. All times are measured on an Intel 3.33GHz 6-core machine with
SOAP running on only one core.

The results show that the majority of the execution time is incurred in the Ha-
choir parsing library, with the execution time per field roughly constant across
the input file formats (so SWF files take longer to parse because they have signif-
icantly more fields than other kinds of files). We believe that users will find these
rectification overheads negligible if not imperceptible during interactive use.

28
Approved for public release; distribution unlimited.

5 Sound Input Filter Generation

Many security exploits target software errors in deployed applications. One gen-
eral approach to nullifying vulnerabilities is to deploy input filters that discard
inputs that may trigger the errors.

Many previous filter generation systems are reactive [29, 30, 32, 48, 58] — they
start with an observed exploit that targets a specific vulnerability, and then an-
alyze the path to that vulnerability to obtain a filter that discards potentially
malicious inputs that may exploit that path (and, in some cases, related paths
that may lead to the vulnerability). Drawbacks include incomplete coverage
(these techniques typically leave some paths to the vulnerability uncovered) and
systems that are not protected until they are attacked.

We present a new proactive system, SIFT, for generating filters that discard in-
puts that may cause integer overflow errors at memory allocation and block copy
sites. Unlike previous reactive systems, SIFT proactively analyzes the program
before it executes to generate filters that take all execution paths into considera-
tion. SIFT can therefore nullify exploits that target unknown vulnerabilities (i.e.,
zero-day attacks).

Property Checker

Figure 12: The SIFT architecture.

5.1 Static Analysis

The core of our technique is an interprocedural, demand-driven, backward static
analysis that, given an integer expression e at a specified program point, prop-
agates the expression backwards against the control flow until it has computed a
symbolic expression set that includes all expressions that the application may

Incoming
Input

Drop Input? Yes Generate
Report

No

Application

AnnotatedModules Critical Site Identification Static Analysis
Symbolic

Expression
Sets

Filter Generator

29
Approved for public release; distribution unlimited.

evaluate (in any execution) to obtain the value of e. The variables in these expres-
sions represent the values of input fields. In effect, the symbolic expression set
captures all of the possible computations that the program may perform on the
input values to obtain the value of e.

A key challenge is that, to successfully extract effective symbolic expression
sets, the analysis must reason precisely about interprocedural computations that
use pointers to compute and manipulate values derived from input fields. Our
analysis meets this challenge by deploying a novel combination of techniques
including 1) a novel interprocedural weakest precondition analysis that works
with symbolic representations of input fields and values accessed via pointers
(including input fields read in loops and values accessed via pointers in loops),
2) a symbolic expression normalization algorithm that enables our loop invari-
ant inference algorithm to successfully analyze loops that manipulate values
derived from input fields or pointers, and 3) an alias analysis that ensures that
the derived symbolic expressions correctly characterize the values that the pro-
gram computes (including values stored in one procedure, then loaded in another
procedure).

As is standard in the field, the alias analysis is designed to work with programs
that do not access uninitialized or out of bounds memory. Our analysis there-
fore comes with the following soundness guarantee. If an input passes the filter
for a given critical expression e, the input field annotations are correct (see Sec-
tion 7.3), and the program has not yet accessed uninitialized or out of bounds
memory when the program evaluates e, then no integer overflow occurs during
the evaluation of e (including the evaluations of intermediate expressions that
contribute to the final value of e).

5.2 SIFT Usage Model

Figure 12 presents the architecture of SIFT. This architecture is designed to
support the following usage model:

Module Identification. Starting with an application that is designed to process
inputs presented in one or more input formats, the developer identifies the mod-
ules within the application that process inputs of interest. SIFT will analyze
these modules to generate an input filter for the inputs that these modules pro-
cess.

30
Approved for public release; distribution unlimited.

Input Statement Annotation. The developer annotates the relevant input state-
ments in the source code of the modules to identify the input field that each input
statement reads.

Critical Site Identification. SIFT scans the modules to find all critical sites
(currently, memory allocation and block copy sites). Each critical site has a
critical expression that determines the size of the allocated or copied block of
memory. The generated input filter will discard inputs that may trigger an integer
overflow error during the computation of the value of the critical expression.

Static Analysis. For each critical expression, SIFT uses a demand-driven back-
wards static program analysis to automatically derive the corresponding symbolic
expression set. Each expression in this set specifies, as a function of the input
fields, how the value of the critical expression is computed along one of the pro-
gram paths to the corresponding critical site.

Input Parser Acquisition. The developer obtains (typically from open-source
parser repositories such as Hachoir [8]) a parser for the desired input format.
This parser groups the input bit stream into input fields, then makes these fields
available via a standard API.

Filter Generation. SIFT uses the input parser and symbolic expression sets to
automatically generate the input filter. When presented with an input, the filter
reads the fields of the input and, for each symbolic expression, determines if an
integer overflow may occur when the expression is evaluated. If so, the filter
discards the input. Otherwise, it passes the input along to the application.

The generated filters can be deployed anywhere along the network path from the
input source to the application that ultimately processes the input.

5.3 Experimental Results

We used SIFT to generate input filters for modules in five real-world applica-
tions: VLC 0.8.6h [21] (a network media player), Dillo 2.1 [4] (a lightweight
web browser), Swfdec 0.5.5 [18] (a flash video player), Swftools 0.9.1 [19]
(SWF manipulation and generation utilities), and GIMP 2.8.0 [6] (an image
manipulation application). Together, the analyzed modules contain 58 critical
memory allocation and block copy sites. SIFT successfully generated filters for
52 of these 58 critical sites (SIFT’s static analysis was unable to derive symbolic

31
Approved for public release; distribution unlimited.

expression sets for the remaining six critical sites, see Section 5.8.2 for more
details). These applications contain six integer overflow vulnerabilities at their
critical sites. SIFT’s filters nullify all of these vulnerabilities.

Analysis and Filter Generation Time. We configured SIFT to analyze all crit-
ical sites in the analyzed modules, then generate a single, high-performance
composite filter that checks for integer overflow errors at all of the sites. The
maximum time required to analyze all of the sites and generate the composite
filter was less than a second for each benchmark application.

False Positive Evaluation. We used a web crawler to obtain a set of least 6000
real-world inputs for each application (for a total of 62895 input files). We found
no false positives — the corresponding composite filters accept all of the input
files in this test set.

Filter Performance. We measured the composite filter execution time for each
of the 62895 input files in our test set. The average time required to read and
filter each input was at most 16 milliseconds, with this time dominated by the
time required to read in the input file.

5.4 Contributions

This paper makes the following contributions:

• SIFT: We present SIFT, a proactive filter generation system for nullify-
ing integer overflow vulnerabilities. SIFT scans modules to find critical
memory allocation and block copy sites, statically analyzes the code to
automatically derive symbolic expression sets that characterize how the ap-
plication may compute the sizes of the allocated or copied memory blocks,
and generates input filters that discard inputs that may trigger integer over-
flow errors in the evaluation of these expressions.

• Static Analysis: We present a new static analysis that automatically de-
rives symbolic expressions that specify, as a function of the input fields,
how the values of critical expressions are computed along the various pos-
sible execution paths to the corresponding critical site.

• Experimental Results: We present experimental results for SIFT on mod-
ules from five applications (VLC 0.8.6h, Dillo 2.1, Swfdec 0.5.5, Swftools
0.9.1, and GIMP 2.8.0). SIFT generates input filters that nullify integer

32
Approved for public release; distribution unlimited.

overflow vulnerabilities that may occur at 52 of the 58 memory alloca-
tion or block copy sites, including six known integer overflow errors. The
filters exhibit no false positives when applied to 62895 real-world inputs
downloaded from various sources on the Internet. The analysis and com-
posite filter generation times are all less than a second. The composite
filters execute in at most an average of 16 milliseconds per input, with the
majority of the time devoted to reading in the input.

These contributions enable SIFT to proactively generate and deploy efficient
input filters that nullify potentially unknown integer overflow vulnerabilities. We
focus on memory allocation and block copy sites because these sites are often
the target of attacks (in part because integer overflow errors at these sites often
enable subsequent buffer overflow/code injection attacks).

5.5 Example

We next present an example that illustrates how siftname nullifies an integer
overflow vulnerability in Swfdec 0.5.5, an open source shockwave flash player.

Figure 13 presents (simplified) source code from Swfdec. When Swfdec opens
an SWF file with embedded JPEG images, it calls jpeg_decoder_decode()
(line 1 in Figure 13) to decode each JPEG image in the file. This function in turn
calls the function jpeg_decoder_start_of_frame() (line 7) to read the image
metadata and the function jpeg_decoder_init_decoder() (line 22) to allocate
memory buffers for the JPEG image.

There is an integer overflow vulnerability at lines 43-47 where Swfdec calculates
the size of the buffer for a JPEG image as:
rowstride * (dec->height_block * 8 * max_v_sample /
dec->components[i].v_subsample)

At this program point, rowstride equals:

(jpeg_width + 8 * max_h_sample - 1) / (8 * max_h_sample)
* 8 * max_h_sample / (max_h_sample / h_sample)

while the rest of the expression equals

(jpeg_height + 8 * max_v_sample - 1) / (8 * max_v_sample)
* 8 * max_v_sample / (max_v_sample / v_sample)

33
Approved for public release; distribution unlimited.

1 int jpeg_decoder_decode(JpegDecoder *dec) {
2 ...
3 jpeg_decoder_start_of_frame(dec, ...);
4 jpeg_decoder_init_decoder (dec);
5 ...
6 }
7 void jpeg_decoder_start_of_frame(JpegDecoder*dec){
8 ...
9 dec->height = jpeg_bits_get_u16_be (bits);

10 /* dec->height = SIFT_input("jpeg_height", 16);*/
11 dec->width = jpeg_bits_get_u16_be (bits);
12 /* dec->width = SIFT_input("jpeg_width", 16); */
13 for (i = 0; i < dec->n_components; i++) {
14 dec->components[i].h_sample =getbits(bits, 4);
15 /* dec->components[i].h_sample =
16 SIFT_input("h_sample", 4); */
17 dec->components[i].v_sample =getbits(bits, 4);
18 /* dec->components[i].v_sample =
19 SIFT_input("v_sample", 4); */
20 }
21 }
22 void jpeg_decoder_init_decoder(JpegDecoder*dec){
23 int max_h_sample = 0;
24 int max_v_sample = 0;
25 int i;
26 for (i=0; i < dec->n_components; i++) {
27 max_h_sample = MAX(max_h_sample,
28 dec->components[i].h_sample);
29 max_v_sample = MAX(max_v_sample,
30 dec->components[i].v_sample);
31 }
32 dec->width_blocks=(dec->width+8*max_h_sample-1)
33 / (8*max_h_sample);
34 dec->height_blocks=(dec->height+8*max_v_sample-1)
35 / (8*max_v_sample);
36 for (i = 0; i < dec->n_components; i++) {
37 int rowstride;
38 int image_size;
39 dec->components[i].h_subsample=max_h_sample /
40 dec->components[i].h_sample;
41 dec->components[i].v_subsample=max_v_sample /
42 dec->components[i].v_sample;
43 rowstride=dec->width_blocks * 8 * max_h_sample /
44 dec->components[i].h_subsample;
45 image_size=rowstride * (dec->height_blocks * 8 *
46 max_v_sample / dec->components[i].v_subsample);
47 dec->components[i].image = malloc (image_size);
48 }
49 }

Figure 13: Simplified Swfdec source code. Input statement annotations appear in
comments.

where jpeg_height is the 16-bit height input field value that Swfdec reads at line
9 and jpeg_width is the 16-bit width input field value that Swfdec reads at line
11. h_sample is one of the horizontal sampling factor values that Swfdec reads
at line 14, while max_h_sample is the maximum horizontal sampling factor
value. v_sample is one of the vertical sampling factor values that Swfdec reads
at line 17, while max_v_sample is the maximum vertical sampling factor value.
Malicious inputs with specifically crafted values in these input fields can cause
the image buffer size calculation to overflow. In this case Swfdec allocates an
image buffer that is smaller than required and eventually writes beyond the end
of the allocated buffer.

34
Approved for public release; distribution unlimited.

S : {((sext(jpeg_width[16],32)+8[32] ×sext(h_sample1[4],32)− 1[32])/(8[32] ×
sext(h_sample1[4],32×8[32] ×sext(h_sample1[4],32))/(sext(h_sample1[4],

32)/sext(h_sample2[4],32))×((sext(j peg_height[16],32)+8[32] ×sext(v_sample1[4],32)−
1[32])/(8[32] ×sext(v_sample1[4],32×8[32] ×sext(v_sample1[4],32))/(sext(v_sample1[4],

32)/sext(v_sample2[4],32))}
Figure 14: The symbolic expression set S for the Swfdec example. Each expres-
sion of S is a bit vector expression. The superscript indicates the bit width of each
expression atom. “sext(v, w)" is the signed extension operation that trans- forms
the value v to the bit width w.

The loop at lines 13-20 reads an array of horizontal and vertical factor values.
Swfdec computes the maximum values of these factors in the loop at lines 26-
31. It then uses these values to compute the size of the allocated buffer at each
iteration in the loop (lines 36-48).

Analysis Challenges: This example highlights several challenges that SIFT must
overcome to successfully analyze and generate a filter for this program. First, the
expression for the size of the buffer uses pointers to access values derived from
input fields. To overcome this challenge, SIFT uses an alias analy- sis [40] to
reason precisely about expressions with pointers.

Second, the memory allocation site (line 47) occurs in a loop, with the size ex-
pression referencing input values read in a different loop (lines 13-19). Different
instances of the same input field (h_sample and v_sample) are used to compute
(potentially different) sizes for different blocks of memory allocated at the same
site. To reason precisely about these different instances, the analysis works with an
abstraction that materializes, on demand, abstract representatives of accessed input
field and computed values (see Section 5.6). To successfully analyze the loop, the
analysis uses a new loop invariant synthesis algorithm (which exploits a new
expression normalization technique to reach a fixed point).

Finally, Swfdec reads the input fields (lines 14 and 17) and computes the size of
the allocated memory block (lines 45-46) in different procedures. SIFT therefore
uses an interprocedural analysis that propagates symbolic expressions across
procedure boundaries to obtain precise symbolic expression sets.

We next describe how
siftname generates a sound input filter to nullify this integer overflow error.

35
Approved for public release; distribution unlimited.

Source Code Annotations: SIFT provides a declarative specification inter
face that enables the developer to specify which statements read which in- put
fields. In this example, the developer specifies that the application reads the
input fields jpeg_height, jpeg_width, h_sample, and v_sample at lines 10,
12, 15-16, and 18-19 in Figure 13. SIFT uses this specification to map the
variables dec->height, dec->width, dec->components[i].h_sample, and dec-
>components[i].v_sample at lines 9, 11, 14, and 17 to the corresponding input
field values. The field names h_sample and v_sample map to two arrays of
input fields that Swfdec reads in the loop at lines 14 and 17.

Compute Symbolic Expression Set: SIFT uses a demand-driven, interproce-
dural, backward static analysis to compute the symbolic expression set S in
Figure 14. S enumerates all of the expressions that Swfdec may evaluate, in any
execution, to obtain the size of the allocated buffer (lines 45-46). Each expres-
sion is in bit vector expression form so that the expression accurately reflects the
representation of the numbers inside the computer as fixed-length bit vectors as
well as the semantics of arithmetic and logical operations as implemented inside
the computer on these bit vectors.

In Figure 14, the superscripts indicate the bit width of each expression atom.

sext(v, w) is the signed extension operation that transforms the value v to the
bit width w. SIFT also tracks the sign of each arithmetic operation in S. For
simplicity, Figure 14 omits this information. SIFT soundly handles the loops
that access the input field arrays h_sample and v_sample. The generated S re-
flects the fact that the variable dec->components[i].h_sample and the variable
max_h_sample might be two different elements in the input array h_sample.
In S, h_sample1 corresponds to max_h_sample and h_sample2 corresponds to
dec->components[i].h_sample. SIFT handles v_sample similarly.

S includes all intermediate expressions evaluated at lines 32-35 and 39-46. In
this example, S contains only a single expression. However, if there may be mul-
tiple execution paths, SIFT generates a symbolic expression set S with multiple
expressions that cover all paths.

Generate Input Filter: Starting with the symbolic expression set S, SIFT gen-
erates an input filter that discards any input that may trigger an integer overflow
when evaluating any expression in S (including all subexpressions). The gener-
ated filter extracts all instances of the input fields jpeg_height, jpeg_width,
h_sample, and v_sample (these are the input fields that appear in S) from
an incoming input. It then iterates over all combinations of pairs of the input
fields h_sample and v_sample to consider all possible bindings of h_sample1,

36
Approved for public release; distribution unlimited.

f unc:= proc(a1,..., ak) { s; return vret ; }
s:= v = read(f) | v = c | v = v1 op v2 |

if (v) s1 else s2 | while (v) {s1} |
s1; s2 | v = ∗ p <label> |
∗ p = v <label> | v = call proc v1 ... vk

f ∈ Fields v, vi, ai ∈ Vars
p ∈ Pointers c ∈ Int

Figure 15: The Core Programming Language

h_sample2, v_sample1, and v_sample2 in S. For each binding, it checks the en-
tire evaluation of S (including the evaluation of all subexpressions) for overflow.
If there is no overflow in any evaluation, the filter accepts the input, otherwise it
rejects the input.

5.6 Static Analysis

Core Language: Figure 15 presents the core language that we use to present the
analysis. As is standard in the field, the analysis runs after the program anal-
ysis infrastructure (SIFT uses LLVM [12]) has lowered the program represen-
tation so that 1) nested expressions are converted into sequences of statements
of the form v = v1 op v2 (where v, v1, and v2 are either non-aliased variables or
LLVM-generated temporaries) and 2) all accesses to potentially aliased memory
locations occur in load or store statements of the form v = ∗ p <label> or ∗ p = v
<label> (the analysis uses the labels to materialize abstract representatives for
accessed memory locations).

A statement of the form “v = read(f)” reads a value from an input field f . Be-
cause the input may contain multiple instances of the field f , different executions
of the statement may return different values. For example, the loop at lines 14-
17 in Figure 13 reads multiple instances of the h_sample and v_sample input
fields.

Because it works with a lowered representation, our static analysis starts with a
variable v at a critical program point. It then propagates v backward against the
flow of control, first within the procedure that contains the critical program
point, then up the call graph to the program entry point. In this way the analysis

37
Approved for public release; distribution unlimited.

op := + | − | ∗ | / | ...
id := 1 | 2 | 3 | 4 | ...
Atom := c | v | f (id) | label(id)
Expr := Atom | Expr op Expr
ExprSet ≡ 2Expr

Figure 16: Symbolic Expression Sets

Statement s Rules
v = c WP(v = c, S) = S[c/v]
v = v1 opv2 WP(v = v1 opv2, S) = S[v1 opv2/v]
v = read(f) WP(v = read(f),S) = S[f (id)/v], f (id) is fresh.
s1; s2 WP(s1; s2, S) = WP(s1,WP(s2, S))
i f (v) s1 elses2 WP(if (v) s1 elses2, S) = WP(s1, S) ∪ WP(s2, S)
v = ∗ p < label > WP(v = ∗ p < label >, S) = S[label(id)/v], label(id) is fresh
∗ p = v < label > F(∗ p = v < label >,S) = S(v,label, label1(id1))(v,label,

label2(id2))...(v,label,S(vf,olraablelll,alabbele1l((idid1)),)...=,labeln(idn)
appearing in S, where

i i
S no_alias(label,labeli)

S[v/labeli(idi)] ∪ S may_alias(label, labeli)
S[v/labeli(idi))] must_alias(label,labeli)

Figure 17: Weakest precondition analysis rules. The notation S[ea/eb] denotes the
symbolic expression set obtained by replacing every occurrence of eb in S with ea.

computes an input expression set that soundly approximates how the program,
starting with input field values f , may compute the value of v at the critical pro- gram
point. The generated filters use the analysis results to check whether the input may
trigger an integer overflow error in any of these computations.

Symbolic Expression Sets: Figure 16 presents the definition of symbolic expres- sion
sets. There are four kinds of atoms: c represents a constant, v represents the variable v,
f (id) represents the value of an input field f (the analysis uses the
natural number id to distinguish different instances of f), and label(id) repre-
sents a value returned by a load statement with the label label (the analysis uses
the natural number id to distinguish values loaded at different executions of the load
statement).

38
Approved for public release; distribution unlimited.

Weakest Precondition Framework: Given a series of statements s and a symbolic
expression set S ∈ ExprSet, our analysis uses a weakest precondition anal-
ysis to compute a symbolic expression set WP(s, S). The analysis ensures that
if for all symbolic expressions e ∈ WP(s, S), the evaluation of e at the program
point before s does not encounter an integer overflow error, then the evaluation
of any expression in S at the program point after s also does not encounter an
integer overflow error. In contrast to many program analyses, which propagate
information forward with the flow of control, this weakest precondition analysis
propagates information backwards against the flow of control.

Analysis of Assignment, Conditional, and Sequence Statements: Figure 37
presents the analysis rules for basic program statements. The analysis of as-
signment statements replaces the assigned variable v with the assigned value (c,
v1 op v2, or f (id), depending on the assignment statement). Here the notation
S[ea/eb] denotes the new expression set obtained by replacing every occurrence
of eb in S with ea. The analysis rule for input read statements materializes a new
id to represent the read value f (id). This mechanism enables the analysis to cor-
rectly distinguish different instances of the same input field (because different
instances have different ids).

The analysis of conditional statements takes the union of the symbolic expres-
sion sets from the analysis of the true and false branches of the if statement. The
resulting symbolic expression set correctly takes the execution of both branches
into account. The analysis of sequences of statements propagates the symbolic
expression set backwards through the statements in sequence.
Analysis of Load and Store Statements: The analysis of a load statement v =
∗ p < label > replaces the assigned variable v with a materialized abstract value
label(id) that represents the loaded value. As for input read statements, the
analysis uses a newly materialized id to distinguish values read on different
executions of the load statement.

The analysis of a store statement ∗ p = v < label > uses the alias analysis to
appropriately match the stored value v against all loads that may return that
value. Specifically, the analysis locates all labeli(idi) atoms in S that either may
or must load the value v that the store statement stores into the location p. If the
alias analysis determines that the labeli(idi) expression must load v (i.e.,
the corresponding load statement will always access the value that the store
statement stored into location p), then the analysis of the store statement replaces
all occurrences of labeli(idi) with v.

39
Approved for public release; distribution unlimited.

If the alias analysis determines that the labeli(idi) expression may load v (i.e.,
on some executions the corresponding load statement may load v, on others it
may not), then the analysis produces two symbolic expression sets: one with
labeli(idi) replaced by v (for executions in which the load statement loads v) and
one that leaves labeli(idi) in place (for executions in which the load statement
loads a value other than v).

We note that, if the pointer analysis is imprecise, the expression sets may be-
come intractably large. SIFT uses the DSA algorithm [40], a context-sensitive,
unification-based pointer analysis. We found that, in practice, this analysis is
precise enough to enable SIFT to efficiently analyze our benchmark applications
(see Figure 21 in Section 5.8.2).

Analysis of Loop Statements: The loop analysis uses fixed-point iteration to
discover an appropriate loop invariant that correctly summarizes the effect of the
loop (regardless of the number of iterations that it may perform). Specifically,
the analysis of a statement while (v) {s} computes a sequence of symbolic ex- pression sets Si, where S0 = 0/ and Si = norm(WP(s, S ∪ Si− 1)). Conceptually,
each successive symbolic expression set Si captures the effect of executing an ad-
ditional loop iteration. The analysis terminates when it reaches a fixed point (i.e.,
when it has performed n iterations such that Sn = Sn− 1). Here Sn is the discovered
loop invariant.
The loop analysis normalizes the analysis result WP(s, S ∪ Si− 1) after each
iter- ation. For a symbolic expression set S = {e1,..., en}, the normalization
of S is norm(S) = {norm(e1),..., norm(en)}, where norm(ei) is the
normalization of
each individual expression in S (using the algorithm presented in Figure 18).

Normalization facilitates loop invariant discovery for loops that read input fields
or load values via pointers. Each analysis of the loop body during the fixed point

computation produces new materialized values f (id) and label(id) with fresh
ids. The new materialized f (id) represent input fields that the current loop itera-
tion reads; the new materialized label(id) represent values that the current loop
iteration loads via pointers. The normalization algorithm appropriately renum-
bers these ids in the new symbolic expression set so that the first appearence
of each id is in lexicographic order. This normalization enables the analysis to
recognize loop invariants that show up as equivalent successive analysis results
that differ only in the materialized ids that they use to represent input fields and
values accessed via pointers.

40
Approved for public release; distribution unlimited.

1 Input: Expression e
2 Output: Normalized expression enorm
3

4 enorm ←e
5 field_cnt ← {all →0}
6 label_cnt ←{all →0}
7 for a in Atoms(e) do
8 if a is in form f (id) then
9 nextid ← f ield_cnt(f) + 1

10 f ield_cnt ← f ield_cnt[f →nextid]
11 enorm ←enorm[∗ f (nextid/ f (id)]
12 else if a is in form label(id) then
13 nextid ←label_cnt(label) + 1
14 label_cnt ←label_cnt[label →nextid]
15 enorm ←enorm[∗ label(nextid)/label(id)]
16 end if
17 end
18 for a in Atoms(enorm) do
19 if a is in form ∗ f (id) then
20 enorm ←enorm[f (id)/ ∗ f (id)]
21 else if a is in form ∗ label(id) then
22 enorm ←enorm[label(id)/ ∗ label(id)]
23 end if
24 end

Figure 18: Normalization function norm(e). Atom(e) iterates over the atoms in
the expression e from left to right.

The above algorithm will reach a fixed point and terminate if it computes the
symbolic expression set of a value that depends on at most a statically fixed
number of values from the loop iterations. For example, our algorithm is able to
compute the symbolic expression set of the size parameter value of the mem-
ory allocation in Figure 13 — the value of this size parameter depends only on
the values of jpeg_width and jpeg_height, the current values of h_sample
and v_sample, and the maximum values of h_sample and v_sample, each of
which comes from one previous iteration of the loop at line 26-31.

Note that the algorithm will not reach a fixed point if it attempts to compute a

41
Approved for public release; distribution unlimited.

symbolic expression set that contains an unbounded number of values from dif-
ferent loop iterations. For example, the algorithm will not reach a fixed point if
it attempts to compute a symbolic expression set for the sum of a set of numbers
computed within the loop (the sum depends on values from all loop iterations).
To ensure termination, our current implemented algorithm terminates the anal-
ysis and fails to generate a symbolic expression set S if it fails to reach a fixed
point after ten iterations.

In practice, we expect many programs may contain expressions whose values
depend on an unbounded number of values from different loop iterations. Our
analysis can successfully analyze such programs because it is demand driven —
it only attempts to obtain precise symbolic representations of expressions that
may contribute to the values of expressions in the analyzed symbolic execution
set S (which, in our current system, are ultimately derived from expressions that
appear at memory allocation and block copy sites). Our experimental results
indicate that our approach is, in practice, effective for this set of expressions,
specifically because these expressions tend to depend on at most a fixed number
of values from loop iterations.

Analyzing Procedure Calls: We next present the interprocedural analysis for
procedure call sites. Given a symbolic expression set S and a function call state-
ment v = call proc v1 ... vk that invokes a procedure proc(a1, a2,...,ak) { sb; ret
vret }, the analysis computes WP(v = call proc v1 ... vk, S).1
Conceptually, the analysis performs two tasks. First, it replaces any occurrences
of the procedure return value v in S (the symbolic expression set after the proce-
dure call) with symbolic expressions that represent the values that the procedure
may return. Second, it transforms S to reflect the effect of any store instruc-
tions that the procedure may execute. Specifically, the analysis finds expressions
label(id) in S that represent values that 1) the procedure may store into a loca-
tion p that 2) the computation following the procedure may access via a load
instruction that may access (a potentially aliased version of) p. It then replaces
occurrences of label(id) in S with symbolic expressions that represent the corre-
sponding values computed (and stored into p) within the procedure.

Note that symbolic expressions derived from an analysis of the invoked proce-
dure may contain occurrences of the formal parameters a1, ...,ak. The interpro-

1 Note that because SIFT uses its underlying pointer analysis to disambiguate function
pointers, it can analyze programs that invoke functions via function pointers.

42
Approved for public release; distribution unlimited.

0

n

1 Input: A symbolic expression set S
2 Output: WP(v = call proc v1 v2 ... vk, S),
3 where proc is defined as:
4 proc(a1, a2,...,ak) { sb; ret vret }
5 Where: label1(id1), label2(id2), ..., labeln(idn)
6 are all atoms of the form label(id)
7 that appear in S.
8

9 R ← 0/
10 ST0 ←WP(sb,{vret})
11 for e0 in ST0[v1/a1] ...[vn/an] do
12 ST1 ←WP(sb,{label1(id1)})
13 for e1 in ST1[v1/a1] ...[vn/an] do
14 ...

15 STn←WP(sb,{labeln(idn)})
16 for en in STn[v1/a1] ...[vn/an] do
17 et ←make_ f resh(e0)
18 ...
19 et ←make_ f resh(en)
20 R←R∪ S[et/v]...[et/labeli(idi)]...

0 i
21 end
22 ...
23 end
24 end

25 WP(v = call proc v1 v2 ... vk, S) ← R

Figure 19: Procedure Call Analysis Algorithm

cedural analysis translates these symbolic expressions into the name space of
the caller by replacing occurrences of the formal parameters a1, ..., ak with the
corresponding actual parameters v1,...,vk from the call site.

Figure 19 presents the algorithm for analyzing procedure calls. At line 10 the
algorithm analyzes the procedure body sb to obtain a symbolic expression set
WP(sb,{vret}) representing the potential return values. It then translates this
symbolic expression set into the name space of the caller by replacing the formal
parameters a1,...,an with the corresponding actual parameters v1,...,vn. At lines
12 through 16 the algorithm analyzes the procedure body sb for each representa-

43
Approved for public release; distribution unlimited.

tive label1(id1), ..., labeln(idn) that appears in S to derive a symbolic expression
set that represents the set of values that the procedure may store into locations
represented by the corresponding abstract materialized value labeli(idi).
At lines 11-16 the algorithm iterates over the derived symbolic expression sets.
At line 20 it substitutes the derived expressions into S to compute the translated
symbolic expression set R = WP(v = call procv1 ... vk, S). To appropriately
distinguish different invocations of the procedure, the analysis creates fresh
versions of the f (id) and label(id) in the expressions e1, ..., en before it performs
the substitution.

The algorithm avoids unnecessary reanalyses of the invoked procedure by caching the analysis results WP(sb,{vret}) and WP(sb{labeli(idi)}) in a table
for reuse at the analysis of other call sites that may invoke the procedure.

Propagation to Program Entry: To derive the final symbolic expression set at
the start of the program, the analysis propagates the current symbolic expres-
sion set up the call tree through procedure calls until it reaches the start of the
program. When the propagation reaches the entry of the current procedure proc,
the algorithm uses the procedure call graph to find all call sites that may invoke
proc.2 It then propagates the current symbolic expression set S to the callers of
proc, appropriately translating S into the naming context of the caller by sub-
stituting any formal parameters of proc that appear in S with the corresponding
actual parameters from the call site. The analysis continues this propagation until
it has traced out all paths in the call graph from the initial critical site where the
analysis started to the program entry point. The final symbolic expression set is
the union of the expression sets derived along all of these paths.

5.7 Implementation

We implemented SOAP in approximately 6000 lines of C++ code. We built the
static analysis using the LLVM Compiler Infrastructure [12].

Analysis for C Programs: SOAP transforms the annotated application source
code into the LLVM intermediate representation (IR) [12], scans the IR to iden-
tify critical values (i.e., size parameters of memory allocation and block copy

2Once again, because the analysis uses its pointer analysis to disambiguate function pointers,
the call graph is accurate for call sites that use function pointers.

44
Approved for public release; distribution unlimited.

call sites) inside the developer specified module, and then performs the static
analysis (see Section 5.6) for each identified critical value.

SOAP extends the analysis described in Section 5.6 to track the bit width of each
expression atom. It also tracks the sign of each expression atom and arithmetic
operation and correctly handles extension and truncation operations (i.e., signed
extension, unsigned extension, and truncation) that change the width of a bit
vector. SOAP therefore faithfully implements the representation of integer values
in the C program.

By default, SIFT recognizes calls to standard C memory allocation routines
(such as malloc, calloc, and realloc) and block copy routines (such as memcpy).
SIFT can also be configured to recognize additional memory allocation and
block copy routines (for example, dMalloc in Dillo).

SOAP provides a declarative specification language that developers use to indi-
cate which input statements read which input fields. In our current implemen-
tation these statements appear in the source code in comments directly below
the C statement that reads the input field. See lines 10, 12, 15-16, and 18-19
in Figure 13 for examples that illustrate the use of the specification language
in the Swfdec example. The SIFT annotation generator scans the comments,
finds the input specification statements, then inserts new nodes into the LLVM
IR that contain the specified information. Formally, this information appears as
procedure calls of the following form:

v = SIFT_Input("field_name", w);

where v is a program variable that holds the value of the input field with the
field name field_name. The width (in bits) of the input field is w. The SIFT
static analyzer recognizes such procedure calls as specifying the correspondence
between input fields and program variables and applies the appropriate analysis
rule for input read statements (see Figure 37).

The static analysis may encounter procedure calls (for example, calls to standard
C library functions) for which the source code of the callee is not available. A
standard way to handle this situation is to work with an annotated procedure dec-
laration that gives the static analysis information that it can use to analyze calls
to the procedure. If code for an invoked procedure is not available, by default
SIFT currently synthesizes information that indicates that symbolic expressions
are not available for the return value or for any values accessible (and therefore
potentially stored) via procedure parameters (code following the procedure call

45
Approved for public release; distribution unlimited.

may load such values). This information enables the analysis to determine if the
return value or values accessible via the procedure parameters may affect the an-
alyzed symbolic expression set S. If so, SIFT does not generate a filter. Because
SIFT is demand-driven, this mechanism enables SIFT to successfully analyze
programs with library calls (all of our benchmark programs have such calls) as
long as the calls do not affect the analyzed symbolic expressions.

We attribute any residual occurrences of abstract materialized values label(id)
in the final symbolic expression set S to imprecision in the alias analysis (such
values would correspond to accesses to uninitialized memory) and prune any
expressions in S that contain such values.

Input Filter Generation: The filter operates as follows. It first uses an existing
parser for the input format to parse the input and extract the input fields used
in the input expression set S. Open source parsers are available for a wide of
input file formats, including all of the formats in our experimental evaluation [8].
These parsers provide a standard API that enables clients to access the parsed
input fields.

The generated filter evaluates each expression in S by replacing each symbolic
input variable in the expression with the corresponding concrete value from the
parsed input. If an integer overflow may occur in the evaluation of any expres-
sion in S, the filter discards the input and optionally raises an alarm. For input
field arrays such as h_sample and v_sample in the Swfdec example (see Sec-
tion 7.2), the input filter enumerates all possible combinations of concrete values.
The filter discards the input if any combination can trigger the integer overflow
error.

Given multiple symbolic expression sets generated from multiple critical pro-
gram points, SOAP can create a single efficient filter that first parses the input,
then checks the input against all symbolic expression sets in series on the parsed
input. This approach amortizes the overhead of reading the input (in practice,
reading the input consumes essentially all of the time required to execute the
filter, see Figure 22) over all of the symbolic expression set checks.

5.8 Experimental Results

We evaluate SIFT on modules from five open source applications: VLC
0.8.6h [21] (a network media player), Dillo 2.1 [4] (a lightweight web browser),

46
Approved for public release; distribution unlimited.

Application Distinct Fields Relevant Fields
VLC 25 2
Dillo 47 3
Swfdec 219∗ 6
png2swf 47 4
jpeg2swf 300 2
GIMP 189 2

Figure 20: The number of distinct input fields and the number of relevant input
fields for analyzed input formats. For Swfdec the second column shows the
number of distinct fields in embedded JPEG images in collected SWF files.

Swfdec 0.5.5 [18] (a flash video player), Swftools 0.9.1 [19] (SWF manipulation
and generation utilities), and GIMP 2.8.0 [6] (an image manipulation applica-
tion). Each application uses a publicly available input format specification and
contains at least one known integer overflow vulnerability (described in either
the CVE database [2] or the Buzzfuzz paper [35]). All experiments were con-
ducted on an Intel Xeon X5363 3.00GHz machine running Ubuntu 12.04.

5.8.1 Methodology

Input Format and Module Selection: For each application, we used SIFT to
generate filters for the input format that triggers the known integer overflow
vulnerability. We therefore ran SIFT on the module that processes inputs in that
format. The generated filters nullify not only the known vulnerabilities, but also
any integer overflow vulnerabilities at any of the 52 memory allocation or block
copy sites in the modules for which SIFT was able to generate input expression
sets (recall that there are 58 critical sites in these modules in total).

Input Statement Annotation: After selecting each module, we added annota-
tions to identify the input statements that read relevant input fields (i.e., input
fields that may affect the values of critical expressions at memory allocation or
block copy sites). Figure 20 presents, for each module, the total number of dis-
tinct fields in our collected inputs for each format, the number of annotated input
statements (in all of the modules the number of relevant fields equals the num-
ber of annotated input statements — each relevant field is read by a single input
statement). We note that the number of relevant fields is significantly smaller

47
Approved for public release; distribution unlimited.

Application Module # of IR Total Input
Relev

Inside
Loop

Max
Expr.

A

VLC demux/wav.c 1.5k 5 3 0 2
Dillo png.c 39.1k 4 3 3 410

Swfdec jpeg/*.c 8.4k 22 19 2 144
png2swf all 11.0k 21 18 18 16
jpeg2swf all 2.5k 4 4 4 2

GIMP file-gif-load.c 3.2k 2 2 2 2

Figure 21: Static Analysis and Filter Generation Results

than the total number of distinct fields (reflecting the fact that typically only a
relatively small number of fields in each input format may affect the sizes of
allocated or copied memory blocks).

The maximum amount of time required to annotate any module was approxi- mately
half an hour (Swfdec). The total annotation time required to annotate all benchmarks,
including Swfdec, was less than an hour. This annotation effort re- flects the fact that,
in each input format, there are only a relatively small number of relevant input fields.

Filter Generation and Test: We next used SIFT to generate a single composite input
filter for each analyzed module. We then downloaded at least 6000 real- world inputs
for each input format on the web, and ran all of the downloaded inputs through the
generated filters. There were no false positives (the filters accepted all of the inputs).

Vulnerability and Filter Confirmation: For each known integer overflow vul-
nerability, we collected a test input that triggered the integer overflow. We con-
firmed that each generated composite filter, as expected, discarded the input because
it correctly recognized that the input would cause an integer overflow.

5.8.2 Analysis and Filter Evaluation

Figure 21 presents static analysis and filter generation results. This figure con- tains a
row for each analyzed module. The first column (Application) presents the
application name, the second column (Module) identifies the analyzed mod- ule
within the application. The third column (# of IR) presents the number of analyzed
statements in the LLVM intermediate representation. This number of

48
Approved for public release; distribution unlimited.

statements includes not only statements directly present in the module, but also
statements from analyzed code in other modules invoked by the original module.

The fourth column (Total) presents the total number of memory allocation and
block copy sites in the analyzed module. The fifth column (Input Relevant)
presents the number of memory allocation and block copy sites in which the size
of the allocated or copied block depends on the values of input fields. For
these modules, the sizes at 49 of the 58 sites depend on the values of input fields.
The sizes at the remaining nine sites are unconditionally safe — SIFT verifies
that they depend only on constants embedded in the program (and that there is
no overflow when the sizes are computed from these constants).

The sixth column (Inside Loop) presents the number of memory allocation and
block copy sites in which the size parameter depends on variables that occurred
inside loops. For these modules, the sizes at 29 of the 58 sites depend on loops
relevant variables, for which SIFT needs to compute loop invariants to generate
input filters.

The seventh column (Max Expr. Set Size) presents, for each application module,
the maximum number of expressions in any expression set that occurs in the
analysis of that module. The expression sets are reasonably compact (and more
than compact enough to enable an efficient analysis) — the maximum expression
set size over all modules is less than 500.

The final column (Analysis Time) presents the time required to analyze the mod-
ule and generate a single composite filter for all of the successfully analyzed
critical sites. The analysis times for all modules are less than a second.

SIFT is unable to generate symbolic expression sets S for six of the 58 call sites.
For two of these sites (one in Swfdec and one in png2swf), the two expressions
contain subexpressions whose value depends on an unbounded number of values
from loop iterations. To analyze such expressions, our analysis currently requires
an upper bound on the number of loop iterations. Such an upper bound could
be provided, for example, by additional analysis or developer annotations. The
remaining four expressions (two in png2swf and two in jpeg2swf) depend on
the return value from strlen(). SIFT is not currently designed to analyze such
expressions.

For each input format, we used a custom web crawler to locate and download at
least 6000 inputs in that format. The web crawler starts from a Google search
page for the file extension of the specific input format, then follows links in each

49
Approved for public release; distribution unlimited.

Application Format # of Input Average Time
VLC WAV 10976 3ms (3ms)
Dillo PNG 18983 16ms (16ms)

Swfdec SWF 7240 6ms (5ms)
png2swf PNG 18983 16ms (16ms)
jpeg2swf JPEG 6049 4ms (4ms)

GIMP GIF 19647 9ms (9ms)

Figure 22: Generated Filter Results.

search result page to download files in the correct format.

Figure 22 presents, for each generated filter, the number of downloaded input
files and the average time required to filter each input. We present the average
times in the form Xms (Yms), where Xms is the average time required to filter
an input and Yms is the average time required to read in the input (but not apply
the integer overflow check). These data show that essentially all of the filter time
is spent reading in the input.

5.8.3 Vulnerability Case Studies

In Section 7.2 we showed how SIFT handles the integer overflow vulnerability
in Swfdec. We next investigate how SIFT handles the remaining five known
vulnerabilities in our benchmark applications. Figure 24 presents the symbolic
expression sets that SIFT generates for each of the five vulnerabilities in the
analyzed modules.

VLC The VLC wav.c module contains an integer overflow vulnerability
(CVE-2008-2430) when parsing WAV sound inputs. When VLC parses the for-
mat chunk of a WAV input, it first reads the input field f mt_size, which indicates
the size of the format chunk. VLC then allocates a buffer to hold the format
chunk. A large f mt_size field value (for example, 0xfffffffe) will cause an over-
flow to occur when VLC computes the buffer size.

We annotate the source code to specify where the module reads the f mt_size
input field. SIFT then analyzes the module to obtain the input expression set S

50
Approved for public release; distribution unlimited.

(Figure 24), which soundly summarizes how VLC computes the buffer size from
input fields.

1 // libpng main data process function.
2 void png_process_data(png_structp png_ptr,
3 png_infop info_ptr, ...) {
4 ...
5 while (png_ptr->buffer_size) {
6 // This is a wrapper for png_push_read_chunk
7 png_process_some_data(png_ptr, info_ptr);
8 }
9 }

10 // chunk handler dispatcher
11 void png_push_read_chunk(png_structp png_ptr,
12 png_infop info_ptr) {
13 if (!png_memcmp(png_ptr->chunk_name,png_IHDR,4)){
14 ...
15 png_handle_IHDR(png_ptr, info_ptr, ...);
16 }
17 ...
18 else if (!png_memcmp(png_ptr->chunk_name,
19 png_IDAT, 4)) {
20 ...
21 // Datainfo callback is called
22 png_push_have_info(png_ptr, info_ptr);
23 ...
24 }
25 }
26 #define PNG_ROWBYTES(pixel_bits,width)\
27 ((pixel_bits)>=8?\
28 ((width)*(((png_uint_32)(pixel_bits))>>3)):\
29 ((((width)*((png_uint_32)(pixel_bits)))+7)>>3))
30 void png_handle_IHDR(png_structp png_ptr,
31 png_infop info_ptr, ...) {
32 ...
33 // read individual png fields from input buffer
34 width = png_get_uint_31(png_ptr, buf);
35 /* width = SIFT_input("png_width", 32); */
36 height = png_get_uint_31(png_ptr, buf + 4);
37 /* height = SIFT_input("png_height", 32); */
38 bit_depth = buf[8];
39 /* bit_depth = SIFT_input("png_bitdepth", 8); */
40 ...
41 png_ptr->width = width;
42 png_ptr->height = height;
43 png_ptr->bit_depth = (png_byte)bit_depth;
44 ...
45 switch (png_ptr->color_type) {
46 case PNG_COLOR_TYPE_GRAY:
47 case PNG_COLOR_TYPE_PALETTE:
48 png_ptr->channels = 1;
49 break;
50 case PNG_COLOR_TYPE_RGB:
51 png_ptr->channels = 3;
52 break;
53 case PNG_COLOR_TYPE_GRAY_ALPHA:
54 png_ptr->channels = 2;
55 break;
56 case PNG_COLOR_TYPE_RGB_ALPHA:
57 png_ptr->channels = 4;
58 break;
59 }
60 png_ptr->pixel_depth = (png_byte)(
61 png_ptr->bit_depth * png_ptr->channels);
62 png_ptr->rowbytes = PNG_ROWBYTES(
63 png_ptr->pixel_depth, png_ptr->width);
64 }
65 // Dillo datainfo initialization callback
66 static void Png_datainfo_callback(png_structp png_ptr,
67 ...) {
68 DilloPng *png;
69 png = png_get_progressive_ptr(png_ptr);
70 ...
71 // where the overflow happens
72 png->image_data = (uchar_t *) dMalloc(
73 png->rowbytes * png->height);
74 ...
75 }

Figure 23: The simplified source code from Dillo and libpng with annotations
inside comments.

Dillo Dillo contains an integer overflow vulnerability (CVE-2009-2294) in its
png module. Figure 26 presents the simplified source code for this exam- ple.
Dillo uses the libpng library to read PNG images. The libpng runtime calls
png_process_data() (line 2) to process each PNG image. This function then

51
Approved for public release; distribution unlimited.

calls png_push_read_chunk() (line 11) to process each chunk in the PNG
image. When the libpng runtime reads the first data chunk (the IDAT chunk),
it calls the Dillo callback png_datainfo_callback() (lines 66-75) in the Dillo
PNG processing module. There is an integer overflow vulnerability at line 73
where Dillo calculates the size of the image buffer as png->rowbytes*png-
>height. On a 32-bit machine, inputs with large width and height fields can
cause the image buffer size calculation to overflow. In this case Dillo allocates an
image buffer that is smaller than required and eventually writes beyond the end
of the allocated buffer.

Figure 24 presents the input expression set S for Dillo. S soundly takes inter-
mediate computations over all execution paths into consideration, including
the switch branch at lines 45-59 that sets the variable png_ptr->channels and
PNG_ROWBYTES macro at lines 26-29. Note that the constant c[32] in S cor-
responds to the possible values of png_ptr->channels, which are between 1 and
4.

Swftools Swftools is a set of utilities for creating and manipulating SWF files.
Swftools contains two tools png2swf and jpeg2swf, which transform PNG and
JPEG images to SWF files. Each of these two tools contains an integer overflow
vulnerability(CVE-2010-1516).

When processing PNG images, Swftools calls getPNG() at png2swf.c:763 to
read the PNG image into memory. getPNG() first calls png_read_header() to
locate and read the header chunk which contains the PNG metadata. It then uses
the metadata information to calculate the length of the image data at png.h:502.
There is no bounds check on the width and the height value from the header
chunk before this calculation. On a 32-bit machine, a PNG image with large
width and height values will trigger the integer overflow error.

We annotate the statements that read input fields png_width and png_height
and use SIFT to derive the input expression set for this vulnerability. Figure 24
presents the input expression set S.

jpeg2swf contains a similar integer overflow vulnerability when processing
JPEG images. At jpeg2swf.c:171 jpeg2swf first calls the libjpeg API to read
jpeg image. At jpeg2swf.c:173, jpeg2swf then immediately calculates the size of
a memory buffer for holding the jpeg file in its own data structure. Because it
directly uses the input width and height values in the calculation without range

52
Approved for public release; distribution unlimited.

checks, large width and height values may cause overflow errors. Figure 24
presents the symbolic expression set S for jpeg2swf.

GIMP GIMP contains an integer overflow vulnerability (CVE-2012-3481)
in its GIF loading plugin file-gif-load.c. When GIMP opens a GIF file, it calls
load_image at file-gif-load.c:335 to load the entire GIF file into memory. For
each individual image in the GIF file, this function first reads the image metadata
information, then calls ReadImage to process the image. At file-gif-load.c:1064,
the plugin calculates the size of the image output buffer as a function of the
product of the width and height values from the input. Because it uses these
values directly without range checks, large height and width fields may cause an
integer overflow. In this case GIMP may allocate a buffer smaller than the
required size.

We annotate the source code based on the GIF specification and use SIFT to
derive the input expression set for this vulnerability. Figure 24 presents the gen-
erated symbolic expression set S.

5.8.4 Discussion

The experimental results highlight the combination of properties that, together,
enable SIFT to effectively nullifying potential integer overflow errors at memory
allocation and block copy sites. SIFT is efficient enough to deploy in production
on real-world modules (the combined program analysis and filter generation
times are always under a second), the analysis is precise enough to successfully
generate input filters for the majority of memory allocation and block copy sites,
the results provide encouraging evidence that the generated filters are precise
enough to have few or even no false positives in practice, and the filters execute
efficiently enough to deploy with acceptable filtering overhead.

53
Approved for public release; distribution unlimited.

VLC {(fmt_size[32] +1[32])+2[32], fmt_size[32] +2[32]}
png2swf {(c[32] × png_width[32])× png_height[32] +65536[32]

| c = 1,2,3,4}
jpeg2swf {(jpeg_width[32] × jpeg_height[32])×4[32]}
Dillo {((png_width[32] ×(c[32] ×sext(png_bitdepth[8],32))

+7[32]) >>3[32])× png_height[32],
png_width[32] × ((c[32] × sext(png_bitdepth[8],32))
>> 3[32]) × png_height[32] | c[32] = 1,2,3,4}

GIMP {(gif _width[32] ×gif _height[32])×2[32],

gif_width[32] ×gif_height[32] ×4[32]}

Figure 24: The symbolic expression set S in the bit vector form for VLC,
Swftools-png2swf, Swftools-jpeg2swf, Dillo and GIMP. The superscript indi-
cates the bit width of each expression atom. “sext(v, w)" is the signed extension
operation that transforms the value v to the bit width w.

6 DIODE

Integer overflow errors are an insidious source of software failures and security
vulnerabilities [34, 57, 2]. Because programs with latent overflow errors often
process typical inputs correctly, such errors can easily escape detection during
testing only to appear later in production. Overflow errors that occur at memory
allocation sites can be especially problematic as they comprise a prime target for
code injection attacks. A typical scenario is that a malicious input exploits the
overflow to cause the program to allocate a memory block that is too small to
hold the data that the program will write into the allocated block. The resulting
out-of-bounds writes can easily enable code injection attacks [34].

Figure 25: System Overview

Test Input
Generation Error Detection Target Site

Identification
Target Constraint

Extraction Constraint
Extraction

Target Constraint
Solution Branch

Enforcement

seed
input

Test
input

Bug Report

54
Approved for public release; distribution unlimited.

6.1.1 DIODE

We present a new technique and system, DIODE (Directed Integer Overflow Dis-
covery Engine), for automatically generating inputs that trigger integer overflow
errors at critical sites. DIODE starts with a target site (such as a memory allo-
cation site) and a target value (such as the size of the allocated memory block).
It then uses symbolic execution to obtain an target expression that characterizes
how the program computes the target value as a function of the input. It then
transforms the target expression to obtain a target constraint. If the input 1) sat-
isfies the target constraint while 2) causing the program to execute the target site,
then it will trigger the error.

Sanity Checks: A key observation behind the design of DIODE is that programs
often perform sanity checks on the input before they use the input to compute
target values. If the input does not pass the sanity checks, the program typically
emits an error or warning message and does not further process the input. To
trigger an overflow, an input must therefore take the same path through the sanity
checks as typical inputs that the program processes successfully.

One obvious way to obtain an input that satisfies the sanity checks is start with
a seed input that causes one or more target sites to execute, then use a solver to
obtain a new input that 1) satisfies the target constraint as well as 2) additional
constraints that force the solver to generate an input that takes the same path to
the target site as the seed input. This approach ensures that the input passes the
sanity checks.

Blocking Checks: Unfortunately, our results indicate that this approach often
fails because, in most cases, the path that the seed input takes through the com-
putation contains additional blocking checks that prevent any input that satisfies
these checks from triggering the error. To trigger an overflow, an input must take
a different path through these blocking checks. The challenge is therefore to find
inputs that 1) satisfy the target constraint, 2) satisfy the sanity checks, and 3) find
a path through the blocking checks to execute the target site. DIODE meets this
challenge as follows:

• Target Site Identification: Using a fine-grained dynamic taint analysis
on the program running on the seed input, DIODE identifies all memory
allocation sites that are influenced by values from the seed input. These
sites are the target sites.

55
Approved for public release; distribution unlimited.

• Target Constraint Extraction: Based on instrumented executions of the
program, DIODE extracts a symbolic target expression that character-
izes how the program computes the target value (the size of the allocated
memory block) at each target memory allocation site. The inputs that
appear in this expression are the relevant inputs. Using the target expres-
sion, DIODE generates a target constraint that characterizes all inputs that
would cause the computation of the target value to overflow (as long as the
input also causes the program to compute the target value).

• Branch Constraint Extraction: Again based on instrumented execu-
tions of the program, DIODE extracts the sequence of conditional branch
instructions that the program executes to generate the path to the target
memory allocation site. To ensure that DIODE considers only relevant
conditional branches, DIODE discards all branches whose condition is not
influenced by relevant inputs.

For each remaining conditional branch, DIODE generates a branch con-
straint that characterizes all input values that cause the execution to take
the same path at that branch as the seed input. DIODE will use these
branch constraints to generate candidate test inputs that force the program
to follow the same path as the seed input at selected conditional branches.

• Target Constraint Solution: DIODE invokes the Z3 SMT solver [33] to
obtain input values that satisfy the target constraint. If the program follows
a path that evaluates the target expression at the target memory allocation
site, DIODE has successfully generated an input that triggers the overflow.
If the program performs no sanity checks on the generated values, this step
typically delivers an input that triggers the overflow.

• Goal-Directed Conditional Branch Enforcement: If the previous step
failed to deliver an input that triggers an overflow, DIODE compares the
path that the seed input followed with the path that the generated input
followed. These two paths must differ (otherwise the generated input
would have triggered an overflow).

DIODE then finds the first (in the program execution order) relevant condi-
tional branch where the two paths diverge (i.e., where the generated input
takes a different path than the seed input). We call this conditional branch
the first flipped branch.

DIODE adds the branch constraint from the first flipped branch to the

56
Approved for public release; distribution unlimited.

constraint that it passes to the solver, forcing the solver to generate a new
input that takes the same path as the seed input at the that first flipped
branch. DIODE then runs the program on this new generated input to see
if it triggers the overflow.

DIODE continues this goal-directed branch enforcement algorithm, incre-
mentally adding the branch constraints from first flipped branches, until
either 1) it generates an input that triggers the overflow or 2) it generates
an unsatisfiable constraint.

If the program does not contain relevant sanity checks, DIODE will typically
find an input that triggers the overflow immediately when it solves the target
constraint. If the program does contain relevant sanity checks, DIODE enforces
flipped sanity checks in the order in which they are executed by the program.
Each iteration of the goal-directed conditional branch enforcement algorithm
forces the solver to produce an input that satisfies the next relevant unsatisfied
sanity check.

As soon as DIODE enforces enough relevant sanity checks, it typically obtains
an input that triggers the overflow (if such an input exists). Because the test
inputs enforce only relevant branch conditions associated with previously failed
relevant sanity checks, this approach gives the input the freedom it needs to
navigate the blocking checks that would, if enforced, cause the program to fail to
execute the target site (and therefore fail to generate an overflow).

6.1.2 Experimental Results

We evaluate DIODE on five applications: Dillo 2.1, VLC 08.6h, SwfPlay 0.5.5,
CWebP 0.3.1, and ImageMagick 6.5.2. We start by using DIODE to locate the
target memory allocation sites (there are 40 of these sites) and extract, for each
site, the target constraint. The target constraint for 17 of the 40 target sites is un-
satisfiable. For 9 of the remaining 23 target sites, DIODE was unable to generate
an overflow-triggering input. Our manual inspection of the source code verified
that the applications contain sanity checks that prevent any input from triggering
an overflow at these target sites.

DIODE was able to generate inputs that trigger overflows at all of the remaining
14 sites. We were aware of 3 of these overflows prior to starting the study; the
remaining 11 were new. We verified that at least 4 of the new overflow errors

57
Approved for public release; distribution unlimited.

are still present in the latest versions of these applications as of the submission
date of this paper. For 2 of the 14 sites, DIODE was able to generate an overflow-
triggering input with a constraint that forced the input to take the same path as
the seed input. For the remaining 12 sites, the presence of relevant blocking
checks requires any overflow-triggering input to take a different path to the target
site.

For 9 of the 14 sites DIODE was able to generate an overflow-triggering input
without enforcing any conditional branches. The remaining 5 sites require the
enforcement of a minimum of 2, average of 4, and maximum of 5 conditional
branches. Our manual inspection of the source code indicates that all of the
enforced conditional branches involve sanity checks on relevant inputs (all but
one of which were apparently not specifically designed to check for overflows).
Our results also indicate that, if the application does perform relevant sanity
checks and the input generation strategy does not take these checks into account,
the input generation strategy is unlikely to find inputs that trigger an overflow
even when such inputs exist (Section 7.4).

6.1.3 Engineering Challenges and Solutions

DIODE works directly on off-the-shelf, production stripped x86 binaries with
no need for symbol information or source code. Given a binary and one or more
seed inputs, DIODE executes instrumented versions of the binary to extract
the symbolic target expressions and branch conditions for each target memory
allocation site. For scalability reasons, DIODE stages the symbolic expression
extraction as follows.

The first stage runs the application using fine-grained taint tracing to find mem-
ory allocation sites in which the input influences the size of the allocated mem-
ory block. This size is the target value of the site. This stage also obtains, for
each target value, the relevant input bytes, i.e., the input bytes that influence
the target value. The second stage runs the application again, recording a (com-
pressed for efficiency) symbolic representation of each computation that the
relevant input bytes influence. The third stage reads the symbolic representa-
tion of the computation to automatically derive the symbolic target expressions
at the target memory allocation sites (these expressions capture the computa-
tion that the application performs on the relevant input bytes to obtain the target
value) and the symbolic branch condition expressions at the relevant conditional

58
Approved for public release; distribution unlimited.

branches. This staging is essential in enabling DIODE to scale to real-world ap-
plications — attempting to record a symbolic representation of all computations
that the application performs is clearly infeasible for real-world applications.

Given a seed input and candidate values from the Z3 SMT solver for relevant
input fields within the seed input, DIODE uses Hachoir [8] and Peach [15] to
generate a new input file with the candidate values. Together, Hachoir and Peach
reconstruct the input file to accommodate the values, applying techniques such
as checksum recalculation.

6.1.4 DIODE and Multi-Application Code Transfer

Once DIODE has identified the error, the next step is to eliminate the error. The
standard approach is to report the error to the developers of the application, then
wait for them to develop and distribute a patch [?]. Drawbacks of this approach
include the patch development and distribution time and the difficulty of ob-
taining any patch at all if the application is no longer under development or
maintained.

In response to this problem, we have developed CodePhage, an automatic code
transfer system [54]. CodePhage starts with an input that exposes an error, a re-
lated input that the application processes correctly, and a donor application that
processes both inputs correctly (such applications are typically readily available
for standard input file formats). CodePhage automatically discovers code in the
donor that eliminates the error, then transfers this code into the original applica-
tion to eliminate the error. CodePhage operates directly on stripped x86 binary
donors to generate source-level patches. The code transfer includes automatic
data structure translation and the automatic location of appropriate code insertion
points in the recipient. Combining CodePhage with DIODE produces a system
that automatically discovers and eliminates integer overflow errors — DIODE
generates inputs that expose errors; CodePhage uses these inputs to locate and
transfer code from donor applications to eliminate the errors. To the best of our
knowledge, CodePhage is the first system to automatically transfer code between
applications.

59
Approved for public release; distribution unlimited.

6.1.5 Continuous Automatic Improvement

Given a the ability to automatically expose errors via tools such as DIODE and
the ability to automatically repair these errors via tools such as CodePhage [54]
(as well as the ability to automatically generate repairs using techniques such
as ClearView [50], Error Virtualization [?, ?], Failure-Oblivious Computing [?],
and RCV [44]), the next step is to build continuous automatic improvement sys-
tems that automatically search for errors and generate patches that repair the
encountered errors. ClearView’s automatic patch generation capability provides
continuous improvement driven by responses to attacks and errors that users
encounter in production use [50]. Augmenting the ClearView continuous im-
provement approach with continuously executing automatic error detection tools
would make it possible to detect and repair errors before users encounter them
and before attackers can exploit them. The result would be significantly more
secure and robust software systems.

6.1.6 Contributions

• Targeted Input Generation: It introduces the approach of automatically
generating error-triggering inputs that target potentially vulnerable pro-
gram sites.

• Sanity and Blocking Checks: It identifies sanity and blocking checks
as an important challenge for techniques that aspire to discover error-
triggering inputs. Critically, our results indicate that if the program con-
tains relevant sanity checks, one way to identify relevant sanity checks
and generate inputs that satisfy these checks is to incrementally find and
enforce first flipped conditional branches.

• DIODE: It presents DIODE, an implemented system that works with pro-
grams that contain relevant sanity checks to automatically generate inputs
that trigger overflow errors. Starting with seed inputs that execute a set
of target memory allocation sites, DIODE uses (optimized) symbolic exe-
cution to obtain symbolic expressions that characterize how input values
determine the path through the computation to the target site and control
the target value (the number of bytes that the target site allocates).

Using a targeted approach, DIODE generates a sequence of inputs, each

60
Approved for public release; distribution unlimited.

1 // libpng main data process function.
2 void png_process_data(png_structp png_ptr,
3 png_infop info_ptr, ...) {
4 ...
5 while (png_ptr->buffer_size) {
6 // This is a wrapper for png_push_read_chunk
7 png_process_some_data(png_ptr, info_ptr);
8 }
9 }

10 void png_push_read_chunk(png_structp png_ptr,
11 png_infop info_ptr) {
12 if (!png_memcmp(png_ptr->chunk_name,png_IHDR,4)){
13
14
15 }

...
png_handle_IHDR(png_ptr, info_ptr, ...);

16 else if (!png_memcmp(png_ptr->chunk_name,png_IDAT, 4)) {
17 // Datainfo callback is called
18 png_push_have_info(png_ptr, info_ptr);
19 }
20 }
21 png_check_IHDR(png_structp png_ptr,
22 png_uint_32 width, png_uint_32 height, int bit_depth...) {
23 ...
24 //Check 3: Height < 1000000L
25 if (height > PNG_USER_HEIGHT_MAX) {
26 png_warning(png_ptr,
27
28
29 }

"Image width exceeds user limit in IHDR");
error = 1;

30 //Check 4: Width < 1000000L
31 if (width > PNG_USER_WIDTH_MAX) {
32 png_warning(png_ptr,
33
34
35 }

"Image width exceeds user limit in IHDR");
error = 1;

36 }
37 png_get_uint_31(png_structp png_ptr, png_const_bytep buf) {
38 png_uint_32 uval = png_get_uint_32(buf);
39 // Checks 1 & 2: Checks that width/height < 0x7fffffffL
40 if (uval > PNG_UINT_31_MAX)
41 png_error(png_ptr,
42 "PNG unsigned integer out of range");
43 return (uval);
44 }
45 #define PNG_ROWBYTES(pixel_bits,width) ((pixel_bits)>=8? \
46 ((width)*(((png_uint_32)(pixel_bits))>>3)):\
47 ((((width)*((png_uint_32)(pixel_bits)))+7)>>3))
48 void png_handle_IHDR(png_structp png_ptr,
49 png_infop info_ptr, ...) {
50 ...
51 // read individual png fields from input buffer
52 width = png_get_uint_31(png_ptr, buf);
53 height = png_get_uint_31(png_ptr, buf + 4);
54 bit_depth = buf[8];
55 ...
56 png_ptr->width
57 png_ptr->height
58 png_ptr->bit_depth
59 ...

= width;
= height;
= (png_byte)bit_depth;

60 png_ptr->pixel_depth = (png_byte)(
61 png_ptr->bit_depth * png_ptr->channels);
62 png_ptr->rowbytes = PNG_ROWBYTES(
63 png_ptr->pixel_depth, png_ptr->width);
64 }
65 png_memset_check (png_structp png_ptr, png_voidp s1, int value,
66 png_uint_32 length)
67 {
68
69
70
71
72
73 }

png_size_t size;
size = (png_size_t)length;
if ((png_uint_32)size != length)

png_error(png_ptr, "Overflow in png_memset_check.");
return (png_memset (s1, value, size));

74 // Dillo datainfo initialization callback
75 static void
76 Png_datainfo_callback(png_structp png_ptr, png_infop info_ptr)
77 {
78 DilloPng *png;
79 ...
80 // Check 5: Incorrect check of max image size
81 if (abs(png->width*png->height) > IMAGE_MAX_W * IMAGE_MAX_H) {
82 MSG("suspicious image size request %ldx%ld\n",
83
84
85 }

png->width, png->height);
return;

86
87
88 }

// Where the overflow happens
png->image_data = (uchar_t *)dMalloc(png->rowbytes * png->height);

Figure 26: Simplified source code from Dillo 2.1 and libpng

61
Approved for public release; distribution unlimited.

of which enforces the next relevant conditional branch to find and satisfy
the sanity checks that would otherwise prevent the input from triggering
the overflow at the target site. The goal is to find inputs that satisfy the rel-
evant sanity checks while preserving the ability of the input to successfully
traverse relevant blocking checks and reach the target site.

• Experimental Results: It presents experimental results that characterize
the effectiveness of DIODE in discovering overflow errors. For our bench-
mark applications, DIODE discovers 14 overflows, 11 of which are new.
For 9 of these overflows, DIODE generates overflows without enforcing
any conditional branches. We attribute this success to a lack of relevant
sanity checks in the program.
For the remaining 5 overflows, DIODE discovers the overflow after en-
forcing a modest (2 to 5) number of conditional branches. We attribute
this success to the ability of DIODE to 1) successfully identify and satisfy
relevant sanity checks that appear in these programs while 2) preserving
the ability of the input to traverse relevant blocking checks that would
otherwise prevent the execution of the target site.

Fuzzing [15, 17] and concolic execution [47, 26, 36, 27] have been shown to be
effective in discovering errors in the initial input parsing stages of
computations, but have had little to no success in exposing errors that lie deep
within the program. DIODE shows that discovering and targeting specific
potentially vulnerable program sites can effec-tively expose such deep errors.
One of the keys to success is new techniques that work appropriately with
sanity and blocking checks to obtain inputs that can successfully tra-verse these
obstacles to reach the target site. The success of DIODE in exposing integer
overflow vulnerabilities opens up the field to the further development of other
targeted techniques that work effectively with sanity and blocking checks to
expose deep errors.

6.1 Example

We next present an example that illustrates how DIODE automatically generates
an input that triggers an integer overflow in Dillo 2.1, a lightweight open source
web browser [4]. Figure 26 presents the simplified source code for this example.
This code is from the libpng library, which Dillo uses to read PNG images.

Target Site Discovery: DIODE runs Dillo on the seed input, using a fine-
grained dynamic taint analysis to track the propagation of input bytes through

62
Approved for public release; distribution unlimited.

the program. The libpng runtime calls png_process_data() (line 2) to pro-
cess each PNG image. This function then calls png_push_read_chunk()
(line 10) to process each chunk in the PNG image. When the libpng run-
time reads the first data chunk (the IDAT chunk), it calls the Dillo callback
png_datainfo_callback() (lines 76-88) in the Dillo PNG processing module.
At line 87, Dillo invokes dMalloc() to allocate the image buffer. Because the
size of the allocated memory block is influenced by the input, DIODE identifies
the site as a target memory allocation site.
Dillo computes the size of the allocated image buffer as png→rowbytes *
png→height. This is the target value. DIODE’s goal is to generate an input that
1) executes the target site at line 87 and 2) causes the computation of the targetvalue png→rowbytes * png→height to overflow. The taint information indi-
cates that the target value is influenced by the PNG width, height, and bitdepth
fields in the seed input file. These fields are the relevant input bytes.

Target Expression Extraction: Next, DIODE runs the application again, this
time with additional instrumentation that records all calculations that involve
the relevant input bytes. DIODE uses the recorded information to extract the
symbolic target expression, which characterizes how the application com-
putes the target value (recall that this target value is the size of the allocated
image buffer) as a function of the input bytes. Conceptually, this expression
is ((width*(4*bitdepth))>>3)*height, where width, bitdepth,
and height are the PNG width, bitdepth, and height fields in the input file.
Large values of these fields will cause this expression to overflow. Because of
endianness conversions that take place when Dillo reads in the input field values,
the actual target expression is:
MallocArg(Mul(32,Mul(32,Add(32,ToSize(32,UShr(32,BvAnd(32,
HachField(32, ’/header/width’),Constant(0xFF000000)),
Constant(24))),Add(32,Add(32,Shl(32,ToSize(32,
BvAnd(32,HachField(32, ’/header/width’), Constant(0xFF))),
Constant(24)),Shl(32,ToSize(32,UShr(32,BvAnd(32,HachField(32,
’/header/width’),Constant(0xFF00)),Constant(8))),
Constant(16))),Shl(32,ToSize(32,UShr(32,BvAnd(32,
HachField(32, ’/header/width’),Constant(0xFF0000)),
Constant(16))),Constant(8)))),ToSize(32,Shrink(8,
UShr(32,ToSize(32,Shrink(8,Mul(32,ToSize(32,
HachField(8, ’/header/bit_depth’)),Constant(4)))),
Constant(3))))),Add(32,ToSize(32,UShr(32,BvAnd(32,
HachField(32, ’/header/height’),Constant(0xFF000000)),
Constant(24))),Add(32,Add(32,Shl(32,ToSize(32,
BvAnd(32,HachField(32, ’/header/height’),
Constant(0xFF))),Constant(24)),Shl(32,ToSize(32,
UShr(32,BvAnd(32,HachField(32, ’/header/height’),

63
Approved for public release; distribution unlimited.

Constant(0xFF00)),Constant(8))),Constant(16))),Shl(32,
ToSize(32,UShr(32,BvAnd(32,HachField(32,
’/header/height’),Constant(0xFF0000)),Constant(16))),
Constant(8))))),Constant(0xFFFFFFFF))

Here TargetSite indicates that, to overflow, the expression must be greater
than the constant 0xFFFFFFFF (at the end of the last line of the expres-
sion). The expression itself references the PNG width, bitdepth, and height
fields from the input file as /header/width, /header/bit_depth, and
/header/height. The remainder of the expression captures the compu-
tation of the target value as described above. It also incorporates constructs
(such as Shl and BvAnd) that capture the conversion of the input values from
big-endian to little-endian form. From this target expression, DIODE extracts
a target constraint that is satisfied if and only if the computation of the tar-
get expression overflows. The variables in this target constraint represent the
/header/width, /header/bit_depth, and /header/height PNG
input file fields. The target constraint faithfully represents integer arithmetic as
implemented in the hardware.

Target Constraint: DIODE next uses the Z3 solver [33] to obtain candidate
values for the relevant input byte values that would cause the target value to
overflow. In this example, the solution sets /header/width to 3880563055L,
/header/bit_depth to 4, and /header/height to
689749785L. It then uses Hachoir [8] and Peach [15] to generate a new input
file with the candidate values (we call this input file the initial input file) and
executes Dillo on this new input file. Dillo and libpng contain sanity checks that
together prevent the input from triggering the overflow.

Sanity Checks: Dillo and libpng collectively contain five sanity checks. The
first two checks occur in png_get_uint_31 (line 37), which checks that the
PNG height and width values are less than 0x7fffffffL. The third and fourth san-
ity checks occur in png_check_IHDR (lines 21–36), which check that the PNG
height and width values are less than one million. The fifth and final sanity check
occurs at line 72, immediately before the target memory allocation site at line
87. This final sanity check attempts to ensure that the size of the allocated image
does not exceed a specified value (IMAGE_MAX_W * IMAGE_MAX_H) (which
is 6000 * 6000). This final check contains an overflow error that prevents it from
recognizing and correctly rejecting some inputs that cause overflows at the target
memory allocation site at line 87.

64
Approved for public release; distribution unlimited.

Symbolic Branch Condition Extraction: DIODE uses the recorded instrumen-
tation information to extract symbolic expressions (the branch conditions) that
characterize how the application computes the values of the branch conditions
at conditional branch instructions that are directly influenced by the relevant
input bytes. For Dillo, the extracted branch conditions characterize how Dillo
computes the branch conditions for the sanity checks described above.

Blocking Checks: DIODE is capable of generating a constraint over the relevant
input bytes that 1) cause the target value to overflow and 2) cause the application
to follow the same path through the conditional branches to the target site as the
seed input. If this constraint were satisfiable, DIODE could then use the solution
to generate an input file that would trigger the overflow. This constraint is not
satisfiable. Dillo and libpng contain blocking checks that prevent any input that
would trigger an overflow from following the same path through the relevant
branches to the target site.

The blocking checks occur in the png_memset procedure, which initializes a
block of memory whose size is a function of the PNG width and bitdepth input
fields. The png_memset procedure is hand coded in assembly language using
the SSE2 extensions. This procedure contains a loop that iterates over the block
of memory initializing the values in the block. The number of iterations of this
loop is a function of the size of the block of memory. The conditional branch
that controls the number of iterations is therefore a relevant branch — its condi-
tion depends on the PNG width and bitdepth fields. Any input that follows the
same path as the seed input through the relevant conditions must therefore have
PNG width and bitdepth fields that produce the same number of iterations of the
loop as the seed inputs. This additional blocking constraint makes it impossible
to obtain an input that both 1) triggers the overflow and 2) follows the same path
through the relevant branches as the seed input.

In our example, the PNG width field is 280. The number of iterations is 8 andthe constraint is width × bitdepth/8 ≤ 1154. The target expression is (width
× bitdepth/8) × height (which is rowbytes × height). This value cannot over-
flow because the maximum value of rowbytes is 1154 and the maximum valueof height is 1,000,000 (line 24). These values produce 1154 × 1,000,000 =
1,154,000,000, which is less than 232.

Goal-Directed Conditional Branch Enforcement: DIODE next starts goal-
directed conditional branch enforcement. It initializes the current constraint
to the target constraint and the current input to the initial input (recall that the

65
Approved for public release; distribution unlimited.

initial input was generated to satisfy only the target constraint). It then executes
Dillo on the seed input and the current input to find the first (in the program
execution order) relevant branch where the seed and current input take different
paths. In our example this relevant branch corresponds to the sanity check at
function png_get_uint_31, line 48 — the seed input satisfies this sanity check,
while the current input fails the sanity check (because the generated height is too
large).

DIODE therefore adds the branch constraint from the corresponding conditional
to the current constraint. Given this new current constraint, Z3 produces a so-
lution that sets /header/width to 1632109428L, /header/bit_depth
to 4, and /header/height to 872360950L. The resulting current input fails
to generate an overflow because it fails the sanity check at png_check_IHDR,
line 25.

DIODE adds the branch constraint from the conditional branch that im-
plements the sanity check to the current constraint and obtains a new
/header/width of 1081489513L and /header/height of 732927L.
The resulting input file fails to trigger an overflow because it fails the san-
ity check at png_check_IHDR, line 31. After adding the corresponding
branch constraint, the solver comes back with /header/width 966175L and
/header/height 484094L. The sanity check at Png_datainfo_callback,
line 81, which checks for an overly large image size, rejects the resulting current
input.

Successful Generation of Overflow-Triggering Input: This sanity check, de-
signed to detect overflows, is itself vulnerable to an overflow — carefully chosen
values can overflow the checked value and cause the sanity check to incorrectly
accept an input that overflows the target value at line 87. After adding the branch
condition from line 81 to the current constraint, the solver comes back with
/header/width 689853L and /header/height 915210L. With these
values, the generated input successfully navigates the sanity checks and the
blocking checks to trigger the overflow. The resulting out of bounds writes cause
Dillo to crash with a SIGSEGV exception.

66
Approved for public release; distribution unlimited.

6.2 Goal-Directed Conditional Branch Enforcement Algorithm

We next present the basic DIODE goal-directed conditional branch enforcement
algorithm. We first define a core imperative language and a small-step opera-
tional semantics for this language. This semantics defines both concrete and
symbolic executions for programs written in the core language. We then use this
semantics to present the algorithm.

6.2.1 Core Language

Figure 27 presents the syntax of a core imperative language with variables, arith-
metic expressions, boolean expressions, assignments, dynamic memory alloca-
tion, memory read/write, conditional statements, while loops, and sequential
composition.

x,y ∈ Var = PgmVar∪ InpVar

A,A1, A2 ∈ Aexp ::= n | x | -A | A1 aop A2

B,B1, B2 ∈ Bexp ::= true | false | A1 cmp A2 |
!B | B1 && B2 | B1 || B2

C,C1,··· ,Cn ∈ Stmt ::= skip | x = A |
x = alloc(y) | x = y[A] | x[A] = y |
if B S1 S2 | while B S

S,S1, S2 ∈ Seq ::= C1; ···; Cn

Figure 27: Syntax

Variables: We divide variables into two classes, PgmVar and InpVar.A program variable ∈ PgmVar is a conventional variable and can
store integer values or memory addresses as usual. On the other hand,
an input variable ∈ InpVar represents an external input value to a program.
DIODE uses input variables to symbolically express how the program computes
a target value (such as the size of the allocated memory block) from the input
values.

Labels: All program statements have a unique label f ∈ Label. before(C) and

after(C) denote the labels before and after the statement C, respectively. In a se-
quence S = C1; ··· ;Cn, after(Ci) = before(Ci+1). We define before(C1; ···;Cn)

67
Approved for public release; distribution unlimited.

1

1
t

and after(C1; ··· ;Cn) as follows:

before(C1; ··· ;Cn) = before(C1)
after(C1; ··· ;Cn) = after(Cn)

 x ∈ PgmVar
INPVAR

x ∈ InpVar ρ f- A ⇒ (n, n)
ρ f- n⇒ (n,n) ρ f- x ⇒ ρ(x) ρ f- x ⇒ (π (ρ(x)), x) ρ f- -A⇒ — n)

(− n,

ρ f- A ⇒ (n,At)
ρ f- -A⇒(− n, -

At)

 ρ f- A1 ⇒ (n1,n1) ρ f- A2 ⇒ (n2,n2)
ρ f- A1 + A2 ⇒ (n1 +n2,n1 +n2)

ρ f- A1 ⇒ (n1,At) ρ f- A2 ⇒ (n2,n2)

ρ f- A1 + A2 ⇒ (n1 + n2, A1 + n2)

ρ f- A1 ⇒ (n1,n1) ρ f- A2 ⇒ (n2,At) ρ f- A1 ⇒ (n1,At) ρ f- A2 ⇒ (n2,At)
2

ρ f- A1 + A2 ⇒ (n1 + n2, n1 + At)
1 2

ρ f- A1 + A2 ⇒ (n1 +n2, At + At)
2 1 2

Figure 28: Semantics of Arithmetic Expressions

6.2.2 Operational Semantics

The language has three different kinds of values

n ∈ Int
b,b1, b2 ∈ Bool = {true,false}

a ∈ Addr

where Int is a set of machine integers of finite bit-width, Bool is the standard set
of boolean values, and Addr is an address space with an unbounded number of
memory addresses.
An environment ρ ∈ Env is a partial mapping from variables to pairs of values
and symbolic values. A value v ∈ Val is either an integer or an memory address.
A symbolic value w ∈ SymVal can be a symbolic arithmetic expression, integer,
or memory address. We use symbolic values to characterize how values were
computed as a function of input variables.

ρ ∈ Env = Var → Val × SymVal
v,v1,v2 ∈ Val = Int ∪ Addr
w,w1,w2 ∈ SymVal = Int ∪ Addr ∪ Aexp

68
Approved for public release; distribution unlimited.

2

mt

=

(f,ρ,m,φ)=[skip]⇒Stmt (ft,ρ,m,φ) x ∈ PgmVar ρ f- A ⇒ (v, w)
(f,ρ,m,φ) =[x = A]⇒Stmt (ft,ρ[x 1→(v,w)],m,φ)

x ∈ PgmVar ρ f- y ⇒ (n,_) n > 0 a ∈/ dom(m)

(f,ρ,m,φ) =[x = alloc(y)]⇒Stmt (ft,ρ[x 1→(a,a)],m[(a,0) 1→(0,0), · · ·,(a,n− 1) 1→(0,0)],φ)

 x ∈ PgmVar ρ f- y ⇒ (a,_) ρ f- A ⇒ (n,_)
(f,ρ,m,φ) =[x = y[A]]⇒Stmt (ft,ρ[x 1→m(a,n)],m,φ)

 ρ f- y ⇒ (v,w) ρ f- x ⇒ (a,_) ρ f- A ⇒ (n,_)
(f,ρ,m,φ) =[x[A] = y]⇒Stmt (ft,ρ,m[(a,n) 1→(v,w)],
φ)

ρ f- B⇒(true,Bt)

ρ f- B ⇒ (true, true)
(f,ρ,m,φ) =[if B S1 S2]⇒Stmt (before(S1),ρ,m,φ)

(f1,ρ,m,φ)= S1]⇒Seq (ft,ρt,mt,φ t)

(f,ρ,m,φ) = if B S1 S2]⇒Stmt (before(S1),ρ,m,φ → (f,Bt)) (f1,ρ,m,φ) = if
[

S1 S2]⇒St
1(ft ,ρt,mt,φ t) B mt

[[1

ρ f- B ⇒ (false, false)
(after(S1),ρ,m,φ) =[if B S1 S2]⇒Stmt (ft,ρ,m,φ) (f,ρ,m,φ) =[if B S1 S2]⇒Stmt (before(S2),ρ,m,φ)

ρ f- B⇒(false,Bt)
(f,ρ,m,φ) =[if B S1 S2]⇒Stmt (before(S2),ρ,m,φ → (f,!Bt))

(f2,ρ,m,φ)= S2]⇒Seq (ft,ρt,mt,φ t) after(S),ρ, m,φ = if B S S ft,ρ, m,φ
[

(f2,ρ,m,φ) = if BS1 S2]⇒Stmt (ft ,ρt,mt,φ t)
[2

(1 2 Stmt
2) []⇒ ()

ρ f- B ⇒ (true,_) (f1,ρ,m,φ)= S]⇒Seq (ft,ρt,mt,φ t)
(f,ρ,m,φ) = while BS]⇒Stmt (before(S),ρ,m,φ) (f1,ρ,m,φ) = [

while BS]⇒St
1 (ft,ρt,mt,φ t)

[[1

ρ f- B ⇒ (false, _)
(after(S),ρ,m,φ) [while B S]⇒Stmt (f,ρ,m,φ) (f,ρ,m,φ) =[while BS]⇒Stmt (ft,ρ,m,φ)

Figure 29: Small-Step Operational Semantics of Statements

Similar to an environment, a memory m ∈ Mem receives a base address and an
offset to the base address as its arguments and returns a pair of a value and a
symbolic value.

m,m1,m2 ∈ Mem = Addr → Offset → Val × SymVal

A branch condition φ ∈ BranchCond is a sequence. Each element (f,B) in this
sequence records the symbolic branch condition that determines the path taken
at the conditional branch at label f. The elements appear in φ in the program
execution order.

φ ∈ BranchCond := ε |(f,B) →φ

f and ft denote before(C) and after(C) of statement C in question

69
Approved for public release; distribution unlimited.

f is a label in Ci (f,ρ,m, φ) =[Ci]⇒Stmt (ft,ρt,mt,φ t)
(f,ρ,m,φ)=[C1;···;Cn]⇒Seq (ft,ρt,mt,φ t)

Figure 30: Small-Step Operational Semantics of Sequences

A program state σ = (f,ρ, m, φ) is composed of the current program point

(represented by a label f), an environment ρ, a memory m, and a branch con-
dition φ . At a state (f,ρ, m, φ), the program is about to execute a statement C
labelled f (i.e. before(C) = f) in the environment ρ and memory m at the program
point f reached by taking the path recorded by the conditional branches in the
sequence φ.

o ∈ State = Label × Env × Mem × BranchCond

Expressions: Figure 28 presents the semantics of arithmetic expressions. Eachexpression evaluates to a pair (v,w), where v ∈ Val is a concrete value and
w ∈ SymVal is a symbolic expression. The INPVAR rule, for example, defines
that the evaluation of an input variable x ∈ InpVar produces a pair (π1(ρ(x)),x),
where
π1(ρ(x)) is the actual input value and x is the variable that symbolically repre-
sents that value. The semantics of boolean expressions is defined in a similar
way.

Statement: Figures 29 and 30 present the small-step operational semantics of DIODE’s core language. Note that the meaning of f and ft is slightly different in
Figures 29 and 30. In Figure 29, f is the label for the program point before the
relevant statement C; ft is the label for the program point after C. In Figure 30, f
and ft are the labels of some program points within (including before for f and
after for ft) some statement Ci in C1; ··· ;Cn.

6.2.3 Algorithm

Figure 31 presents the DIODE goal-directed conditional branch enforcement
algorithm. Given a program S, an initial program state σ , and a target site f, the
algorithm first extracts the symbolic target expression B and the observed path φ
(from the seed input) for that site (line 1). target((S,σ), f) is defined as follows:

target((S,σ),f)={(π2(ρ(y)),φ) |(σ,(f,ρ,m,φ)) ∈ τ∗ (S)}
where f = before(x = alloc(y))

70
Approved for public release; distribution unlimited.

The function target((S, σ), f) is defined in terms of the reflexive transitive clo-
sure τ∗ (S) of the transition relation of the program S, which contains all
possible
transitions from a starting state to all reachable states.

The algorithm next uses the overflow(B) function to extract the target constraint
β (line 2). The overflow(B) function returns a target constraint β such that any
input that satisfies the target constraint β will trigger an overflow during the
computation of the target expression B.

The algorithm next compresses the path φ to coalesce multiple occurrences
of conditional branch constraints of a conditional statement into a single con-
straint (line 7 and Figure 32). This single constraint is the conjuction of all of the
observed branch constraints. The algorithm then extracts the relevant branch con-
straints (line 8) and performs the goal-directed conditional branch enforcement
algorithm (lines 10-16).

The relevant(φ , β) function takes a branch condition φ and a target constraint β
as its arguments, and removes conditions that are not relevant to the target con- straint β from the branch condition φ . A condition (f, B) in a branch condition
is relevant to a target constraint β if the condition B and the target constraint β
share the same input variable.

6.2.4 System Design and Implementation

We next discuss how DIODE deals with the many complications that it must
overcome to effectively operate on stripped x86 binaries. DIODE consists of
approximately 9,000 lines of C (most of this code implements the taint and sym-
bolic expression tracking) and 6,000 lines of Python (the target and branch con-
straint generation algorithms, code that interfaces with Z3, code that manages
the database of relevant experimental results, and a distributed work queue sys-
tem). We first describe our techniques for target site identification. Second, we
introduce the dynamic instrumentation used for target and branch constraint ex-
traction. Third, we discuss how DIODE generates and solves target constraints.
Fourth, we discuss how DIODE generates new inputs. Fifth, we discuss the im-
plementation of our goal-directed conditional branch enforcement algorithm.
Finally, we discuss how DIODE detects any errors caused by the overflow.

71
Approved for public release; distribution unlimited.

Input : a program S, an initial state σ , a target label f
Output : an input I that triggers an integer overflow at label f

1 for (B,φ) in target((S,σ), f) do

2 β ←− overflow(B)
3 if the solver generates an input I that satisfies β then
4 if the input I triggers an overflow at label f then
5 return the input I

6 else continue

7 φ ←− compress(φ)
8 φ ←− relevant(φ ,β)
9 φt ←− true

10 while true do
11 if the previous input I satisfies φ then break

12 φt ←− φt∧ (the first condition in φ that the previous
in- put I does not satisfy)

13 if the solver generates an input I that satisfies φt ∧ β then
14 if the input I triggers an overflow at label f then
15 return the input I

16 else break

17 return not found

Figure 31: Goal-Directed Conditional Branch Enforcement

6.2.5 Target Site Identification

To extract the set of symbolic target expressions that characterizes how the ap-
plication computes the target value at critical program sites, DIODE uses a fine-
grained dynamic taint analysis built on top of the Valgrind [47] binary analysis
framework. Our analysis takes as input a specified taint source, such as a file-
name or a network connection, and marks all data read from the taint source as
tainted. Each input byte is assigned a unique label and is tracked by the execu-
tion monitor as it propagates through the program until it reaches a potential
target site (e.g., malloc). To track the data-flow dependencies from source to
sink, our analysis instruments arithmetic instructions (e.g., ADD, SUB), data
movement instructions (e.g., MOV, PUSH) and logic instructions (e.g., AND,

72
Approved for public release; distribution unlimited.

Parameters:φ ∈ BranchCond

Returns :φ’s compressed form ∈ BranchCond

1 Function compress(φ) =
2 begin
3 if φ is ε then
4 return ε
5 else if φ is (f,B) → φ then
6 B ←− B∧ (t Bt)

(f,B) in φ

7 φ ←− filter out all (f,Bt) from φ

8 return (f,B) → compress(φ)

Figure 32: Branch Condition Compression

XOR). Using the dynamic taint analysis on the application and a seed input,
DIODE generates the set of target sites and relevant input bytes.

6.2.6 Target and Branch Constraint Extraction

Next, DIODE reruns the program with additional instrumentation that enables
DIODE to reconstruct the full symbolic target expression. Conceptually, DIODE
generates a symbolic record of all calculations that the application performs
(Section 6.2). Obviously, attempting to record all calculations would produce an
unmanageable volume of information. DIODE reduces the volume of recorded
information with the following optimizations:

• Relevant Input Bytes: DIODE only records calculations that involve the
relevant input bytes. Specifically, DIODE maintains an expression tree of
relevant calculations that only tracks calculations that operate on tainted
data (i.e., relevant input bytes). This optimization drastically reduces the
amount of recorded information.

• Simplify Expressions: DIODE further reduces the amount of recorded
information by simplifying recorded expressions at runtime. Specifically,
DIODE identifies and simplifies resize, move and arithmetic operations.
For example, DIODE can convert the following sequence of VEX IR in-
structions:

t15 = Add32(t10, 0x1:I32)
t16 = Add32(t15,0x1:I32)

73
Approved for public release; distribution unlimited.

t17 = Add32(t16,0x1:I32)

that would result in: Add32(Add32(Add32(t10, 0x1), 0x1),0x1)

into: Add32(t10, 0x3)

To convert relevant input bytes to symbolic representations of the input format,
DIODE uses the Hachoir [8] tool to convert byte ranges into input fields (e.g., in
the PNG format, bytes 0-3 represent /header/height).

DIODE also uses the recorded information to extract symbolic expressions that
characterize how the application computes the values of conditional branch
instructions that relevant input bytes directly influence.

6.2.7 Target Constraint Solution

DIODE uses the Z3 SMT solver [33] to obtain new input values that satisfy the
target constraint. Note that the generated target constraint is designed to capture
any overflow in the evaluation of the expression, including in the evaluation of
subexpressions. For example, if bbp8 ∈ {8,16,32}, there are no values that cause
the following expression to overflow:

((width16 × height16) × 4)/bbp8) > 232

But there are values that cause the following subexpression to overflow:

((width16 × height16) × 4)) > 232

6.2.8 Test Input Generation

DIODE uses a combination of Hachoir [8] and Peach [15] to generate input files
with the values obtained from the SMT solver for the target expression. To-
gether, these tools reconstruct the input file such that it satisfies any checksum
calculations or any required field orderings. If DIODE needs to operate on an
unknown input format, it also supports a raw-byte option, where modifications
are made directly on the input bytes. To deal with any required checksum cal-
culations in raw-byte mode, DIODE can use standard checksum reconstruction
techniques [56].

74
Approved for public release; distribution unlimited.

6.2.9 Goal-Directed Branch Enforcement

If a test input that is generated from a target constraint solution fails to trigger
an integer overflow error, DIODE turns on instrumentation that records the path
taken at all conditional branches that the seed input executes. DIODE uses this
instrumentation to find the first conditional branch at which the generated input
takes a different path from the seed input. DIODE uses this information to drive
the goal-directed branch enforcement algorithm described above (Section 6.2).

6.2.10 Error Detection

We use Valgrind’s memcheck to detect errors (invalid reads and writes; uninitial-
ized reads and writes) that occur as a result of the overflow. Our automated sys-
tem therefore does not directly detect the overflow; it only detects the overflow
indirectly through its effect on the computation (for our benchmark applications,
we manually verify that the generated input actually produces an overflow and
generates the reported errors as a result of the overflow). Our automated system
first filters any errors that occur during t he execution on the seed input.

6.2.11 Evaluation

We evaluate DIODE on five applications: Dillo 2.1, VLC 08.6h, SwfPlay 0.5.5,
CWebP 0.3.1, and ImageMagick 6.5.2. For each application we obtain a seed in-
put, then use DIODE to automatically generate input files that trigger overflows
in the applications. We perform all tests on a quad Intel i7 2.2 GHz machine
with 8 GB RAM.

6.2.12 Benchmark Selection

The benchmark applications were selected as follows. First, we select applica-
tions that process input formats supported by Hachoir [8] and Peach [15]. Sec-
ond, we filter applications that cannot be successfully processed by DIODE’s
dynamic instrumentation engine. Third, we select applications that contain at
least one known integer overflow vulnerability,

75
Approved for public release; distribution unlimited.

Application

Total
Target
Sites

DIODE
Exposes
Overflow

Target
Constraint

Unsatisfiable

Sanity
Checks

Prevent
Overflow

Dillo 2.1 12 3 1 8
VLC 08.6h 4 4 0 0

SwfPlay 0.5.5 8 3 5 0
CWEBP 0.3.1 7 1 6 0

ImageMagick 6.5.2 9 3 5 1

Table 1: Target Site Classification

6.2.13 Target Site Classification

Table 1 classifies the target sites in our benchmark applications. There is one row
for each application. The first column (Application) identifies the application.
The second column (Total Target Sites) presents total number of exercised mem-
ory allocation sites from the executions on the seed inputs. These sites are the
target sites. The third column (DIODE Exposes Overflow) presents the number
of sites for which DIODE was able to generate an input that triggered an over-
flow at the site. The fourth column (Target Constraint Unsatisfiable) presents the
number of sites for which the target constraint, by itself, is unsatisfiable. We veri-
fied, via a manual inspection, that there is no input that will cause an overflow at
any of these sites. The fifth column (Sanity Checks Prevent Overflow) presents
the number of remaining sites. For all of these remaining sites, we manually veri-
fied that the application contains sanity checks that ensure that there is no input
that triggers an overflow at that site.

Note that, for each target site, either 1) DIODE finds an input that triggers an
overflow at that site, or 2) no such input exists. Our analysis indicates that, ex-
cept for VLC 0.8.6h, whenever DIODE is able to generate an input that triggers
an overflow at a given site, the application is missing overflow sanity checks for
that site (of course, the applications contain other relevant sanity checks that
DIODE must successfully navigate to trigger the overflow). VLC 0.8.6h contains
ineffective overflow sanity checks that are designed to protect the application
against overflow, but do not, in fact, do so. DIODE is able to generate inputs that
successfully evade these checks to trigger overflows at the target sites.

76
Approved for public release; distribution unlimited.

Application

Target

CVE Number

Error Type

Analysis and
Discovery Time

Enforced
Branches

Target
Success Rate

 Dillo 2.1 png.c@203 CVE-2009-2294 SIGSEGV/InvalidRead (42m) 8m 4/35 0/200 Dillo 2.1 fltkimagebuf.cc@39 New SIGSEGV/InvalidRead (42m) 7m 5/69 0/200
Dillo 2.1 Image.cxx@741 New SIGSEGV/InvalidRead (42m) 7m 4/5779 0/200

VLC 0.8.6h messages.c@355 New SIGSEGV/InvalidRead (6m) 1m 2/117 32/200
VLC 0.8.6h wav.c@147 CVE-2008-2430 InvalidRead/Write (6m) 1m 0/62 2/2
VLC 0.8.6h dec.c@277 New SIGSEGV/InvalidRead (6m) 8m 5/291 57/200
VLC 0.8.6h block.c@54 New InvalidRead (6m) 4m 0/151 200/200

SwfPlay 0.5.5 jpeg_rgb_decoder.c@253 New SIGSEGV/InvalidWrite (7m) 13m 0/1736 200/200
SwfPlay 0.5.5 jpeg_rgb_decoder.c@257 New SIGSEGV/InvalidWrite (7m) 13m 0/1736 200/200
SwfPlay 0.5.5 jpeg.c@192 New SIGABRT/InvalidWrite (7m) 1m 0/1012 200/200
CWebP 0.3.1 jpegdec.c@248 New SIGSEGV/InvalidWrite (11m) 2s 0/651 155/200

ImageMagick 6.5.2 xwindow.c@5619 CVE-2009-1882 SIGSEGV/InvalidWrite (6m) 1m 0/2521 200/200
ImageMagick 6.5.2 cache.c@803 New SIGSEGV/InvalidWrite (6m) 1m 0/306 199/200
ImageMagick 6.5.2 display.c@4393 New SIGSEGV/InvalidWrite (6m) 2m 0/154 200/200

Table 2: Evaluation Summary

6.2.14 Overflow Characteristics

Table 2 summarizes the results for each overflow. The table contains one line for
each overflow that DIODE discovers. The first column (Application) identifies
the application that contains the overflow. The second column (Target) presents
the source code file and line that contains the memory allocation statement for
which the overflow occurs. The third column (CVE Number) presents either the
CVE number of the overflow (if the overflow was known) or "New" if the over-
flow was new. We note that all but three of the 14 overflows were new. Four of
the 11 new overflows persist in the latest versions of the benchmark applications
as of the submission date of this paper. Specifically, the latest versions of CWebP
and Display, CWebP 0.4.1 and Display 6.8.9-8, are still vulnerable to error trig-
gering inputs discovered by DIODE. We have notified the developers and are
awaitingconfirmation.

The fourth column (Error Type) characterizes the effect of the overflow on the
application for the first input (that DIODE discovers) that triggers the overflow.
In most cases the overflow causes the program to generate a SIGSEGV excep-
tion and crash, either from an invalid read or from an invalid write as presented
in the table. The remaining two overflows cause the application to perform in-
valid reads and/or writes that do not crash the application. We detect these in-
valid reads and writes using the Valgrind memcheck tool [47], which monitors
the reads and writes and detects invalid reads and writes. All of the invalid reads
or writes occur because the overflow makes the memory block allocated at the

77
Approved for public release; distribution unlimited.

target allocation site too small to contain the data.

The fifth column (Analysis and Discovery Time) presents the initial analysis
time required for each application (performed once) and the subsequent time to
generate an error input for each bug. Each entry in this column is of the form (A)
B, where A is the analysis time and B is the time required to generate the error
input.

The sixth column (Enforced Branches) presents the number of relevant condi-
tional branches that DIODE enforced before generating an input that triggered
the overflow. Each entry in this column is of the form X/Y, where X is the num-
ber of enforced conditional branches and Y is the total number of relevant con-
ditional branches on the path that the seed input takes to the target memory allo-
cation site. We note that the number of enforced conditional branches is small,
especially relative to the total number of relevant conditional branches — to
discover the overflow, DIODE enforces only between two to five out of the 35 to
5779 total relevant conditional branches. Our manual inspection of the code
indicates that all of the enforced branches are sanity checks, but that (apparently)
only one of these checks is designed (obviously incorrectly) to detect an over-
flow (Section 7.2).

6.2.15 Blocking Checks

Recall that DIODE can generate a constraint that requires 1) the computation of
the target value to overflow and 2) the input to follow the same path through the
relevant conditional branches as the seed input. If this constraint is satisfiable,
the solution typically immediately provides an input that will trigger an overflow
at the site. Because of blocking checks, this constraint is unsatisfiable for all but
two of the sites, specifically SwfPlay 0.5.5 at jpeg.c@192 and CWebP 0.3.1 at
jpegdec.c@248.

6.2.16 Inputs That Satisfy Target Constraint Alone

The seventh column (Target Success Rate) presents the results from the experi-
ment in which DIODE generated 200 inputs that satisfied the target constraint
by itself (with none of the conditional branch constraints added to the target

78
Approved for public release; distribution unlimited.

constraint passed to the solver). Note that all of these inputs will trigger an over-
flow at the target memory allocation site if they follow a path that evaluates the
target expression at that site. Note also that every discovered input that triggers
the overflow is in the set of inputs that satisfy the target constraint alone and
therefore could potentially be generated as one of the sampled 200 inputs.

Each entry in the column is of the form X/200, where X is the number of gen-
erated inputs that actually trigger the overflow. We note that there is a bimodal
distribution — in general, either all or the vast majority of the 200 generated
inputs trigger the overflow or none or few of the 200 generated inputs trigger the
overflow. This bimodal distribution is correlated with the presence or absence of
sanity checks on relevant input values — without sanity checks, all or the
vast majority of the generated inputs trigger the overflow. If the application con-
tains sanity checks, the generated inputs are unlikely to pass the sanity checks to
trigger the overflow. These data indicate that, if the application contains sanity
checks and the input generation strategy does not take these checks into account,
the input generation strategy is unlikely to find inputs that trigger an overflow
(even when such inputs exist).

For CVE-2008-2430, the target expression is of the form x + 2, where x is an input
field. The target constraint for this expression has only two solutions (because
there are only two values of x that cause the target expression to overflow).

6.2.17 Target and Enforced Branch Success Rate

The eighth column (Target + Enforced Success Rate) presents experimental re-
sults for those overflows that DIODE discovered only after enforcing some of
the conditional branches. DIODE generated 200 inputs that satisfied the corre-
sponding constraint (i.e., the target constraint plus the constraints that enforced
the discovered first flipped branches in Algorithm 31). Each entry in the column
is of the form X/200, where X is the number of generated inputs that trigger the
overflow (note that we do not run this experiment if the majority of the inputs
that satisfy the target constraint alone also trigger the overflow).

We note that, for three of the five overflows, the vast majority of the generated in-
puts trigger the overflow. For the remaining two overflows, approximately half of
the generated inputs trigger the overflow. We attribute this success to DIODE’s
ability to produce inputs that satisfy the sanity checks while preserving their

79
Approved for public release; distribution unlimited.

flexibility to satisfy the blocking checks and traverse alternate paths through the
computation to reach the target memory allocation site and trigger the overflow.

The success of DIODE in generating these overflows also illustrates the difficulty
of writing sanity checks that detect inputs that cause overflows — even though
Dillo 2.1 and VLC 0.8.6h contain sanity checks, these checks do not detect all
inputs that trigger overflows.

80
Approved for public release; distribution unlimited.

7 CodePhage

Horizontal gene transfer is the transfer of genetic material between cells in differ-
ent organisms. Examples include plasmid transfer (which plays a major role in
acquired antibiotic resistance [25]), virally-mediated gene therapy [38], and the
transfer of insect toxin genes from bacteria to fungal symbionts [23]. Because of
its ability to directly transfer functionality evolved and refined in one organism
into another, horizontal gene transfer is recognized as a significant factor in the
development of many forms of life [39].

Like biological organisms, software applications often face challenges and
threats from the environment in which they operate. Despite significant software
development effort, errors and security vulnerabilities still remain a important
concern. Many of these errors are caused by an uncommon case that the develop-
ers of one (or more) of the applications did not anticipate. But in many cases, the
developers of another application did anticipate the uncommon case and wrote
correct code to handle it.

7.1 The Code Phage (CP) Code Transfer System

We present Code Phage (CP), a novel horizontal code transfer system that auto-
matically eliminates errors in recipient software applications by finding correct
code in donor applications, then transferring that code from the donor into the
recipient. The result is a software hybrid that productively combines beneficial
code from multiple applications:

• Donor Selection: CP starts with an application and two inputs: an input
that triggers an error and a seed input that does not trigger the error. Work-
ing with a database of applications that can read these inputs, it locates a
donor that processes both inputs successfully. The hypothesis is that the
donor contains a check, missing in the recipient, that enables it to process
the error-triggering input correctly. The goal is to transfer that check from
the donor into the recipient (and eliminate the error in the recipient).

• Candidate Check Discovery: To identify the check that enables the donor
to survive the error-triggering input, CP analyzes the executed conditional
branches in the donor to find branches that take different directions for the
seed and error-triggering inputs. The hypothesis is that if the check elimi-

81
Approved for public release; distribution unlimited.

nates the error, the seed input will pass the check but the error-triggering
input will fail the check (and therefore change the branch direction).

• Patch Excision: CP performs an instrumented execution of the donor
on the error-triggering input to obtain a symbolic expression tree that
expresses the check as a function of the input fields that determine its
value. This execution translates the check from the data structures and
name space of the donor into an application-independent representation
suitable for insertion into another application.

• Patch Insertion: CP next uses an instrumented execution of the recipi-
ent on the seed input to find candidate insertion points at which all of the
input fields in the excised check are available as recipient program expres-
sions. At each such point, it is possible to translate the check from the
application-independent representation into the data structures and name
space of the recipient. This translation, in effect, inserts the excised check
into the recipient.

• Patch Validation: CP inserts the translated check into the recipient at
each candidate insertion point in turn, then attempts to validate the patch.
It recompiles the application, uses regression testing to verify that the
patch preserves correct behavior on the regression suite, and checks that
the patch enables the patched recipient to correctly process the error-
triggering input. As available, CP also reruns error detecting tools to gen-
erate additional error-triggering inputs, which it then uses to recursively
eliminate any residual or newly discovered errors.
As appropriate, CP can also exploit the semantics of specific classes of
errors (such as divide by zero or integer overflow) to perform additional
validation steps. For integer overflow errors, for example, CP analyzes the
check, the expression that overflows, and other existing checks in the
recipient that are relevant to the error to verify that there is no input that 1)
satisfies the checks to traverse the exercised path through the program to
the overflow and also 2) triggers the overflow.

• Retry: If the validation fails, CP tries other candidate insertion points,
other candidate checks, and other donors.

If the transferred check detects an input that may trigger the error, it exits the
application before the error occurs. The check therefore introduces no new and
potentially unpredictable behaviors — it simply narrows the set of inputs that the
application decides to process. This narrowing is conceptually similar to trans-
formations that eliminate concurrency errors by narrowing the set of possible

82
Approved for public release; distribution unlimited.

interleavings [45, 37].

7.1.1 Usage Scenarios

Proprietary Donors: The CP donor analysis operates directly on stripped bi-
naries with no need for source code or symbolic information of any kind. CP
can therefore use arbitrary binaries, including closed-source proprietary bina-
ries, as donors for other applications. A developer could, for example, reduce
development and testing effort by simply omitting checks for illegal inputs, then
using CP to automatically harden the application by automatically transferring in
checks from more intensively engineered (including closed-source proprietary)
applications.

Multilingual Code Transfer: CP supports multilingual code transfer between
applications written in different programming languages. Because CP works
with binary donors, the current implementation supports arbitrary (compiled)
donors. The current CP implementation generates source-level patches in C. It
would be straightforward to extend CP to generate patches in other languages.
Given appropriate binary patching capability, it would also be straightforward to
generate binary patches, including hot patches for running applications.

Multiversion Code Transfer: In addition to transferring checks between in-
dependently developed applications, we have also used CP to transfer checks
between different versions of the same application. The motivation is to auto-
matically obtain a targeted update that eliminates an error in an older version
without the disruption often associated with full upgrade [31].

Divergent Functionality: Even though CP works with applications that process
the same inputs, the recipient and donor do not need to implement the same
functionality. Many errors occur in code that parses the input, constructs the
internal data structures that hold the input, and/or reads the input into those data
structures. Even when the applications have different goals and functionality,
the fact that they both read the same input is often enough to enable a successful
transfer.

Continuous Multiple Application Improvement: CP can work with any source
of seed and error-triggering inputs. Its current integration with the DIODE auto-
matic error-discovery system [52] points the way to future systems that combine
1) large libraries of applications, 2) a variety of automatic error discovery tools

83
Approved for public release; distribution unlimited.

(for example, DIODE and BuzzFuzz [35]), and 3) CP along with other auto-
matic error repair tools such as ClearView [50], staged program repair [42], and
automatic code fracture and recombination [53]. Continuously running the error-
discovery tools across the library of applications, then using horizontal code
transfer and other program repair mechanisms to generate repairs delivers an
automatic application improvement system that productively leverages the entire
global software development enterprise.

Such a system holds out the promise of automatically producing robust software
hybrids that incorporate the best code produced anywhere by any mechanism.
Given the ability of DIODE and CP to work with stripped binary donors, it is
possible to include closed-source software produced by proprietary software
development efforts into this continuous application improvement system.

7.1.2 Scope

CP is currently designed to locate and transfer checks, including all computation
required to compute the checks, between applications that process the same
inputs. The goal is to change the (incorrect) semantics of the recipient so that it
rejects inputs that would otherwise trigger the error. The patch validation phase,
along with the rejection of unstable insertion points (Section 7.3), is designed to
reduce, but not necessarily eliminate, the possibility of rejecting inputs that the
recipient could have processed correctly. The excised computation can be, and
in practice always is, distributed across multiple system layers and abstraction
boundaries within the donor — the excised computation always includes code
from multiple system libraries and procedures within the application.

In the current implementation of CP, a set of values sufficient to compute the
check must be available in the recipient at one of the granularities at which they
are accessed in the excised computation and in one of the same byte orders. It is
straightforward to extend the implementation to reassemble values sufficient to
compute the check from bits arbitrarily distributed across the address space of
the recipient as long such a set of bits is accessible via the name space of the
recipient.

CP is currently designed to transfer code that computes a check. But the basic
CP transfer techniques are designed to dynamically track, extract, and insert any
computation (or computations) that generate any value (or values) in the donor

84
Approved for public release; distribution unlimited.

as long as CP can identify the value(s). The two critical questions are identifying
the value(s) in the donor and the insertion point(s) in the recipient. CP automates
this identification for checks in the donor that eliminate errors in the recipient.

7.1.3 Experimental Results

We evaluate CP on 10 errors in 7 recipient applications (JasPer 1.9 [10], gif2tiff
4.0.3 [11], CWebP 0.31 [3], Dillo 2.1 [4], swfplay 0.55 [18], Display 6.5.2-8 [9],
and Wireshark-1.4.14 [22]). The donor applications are FEH-2.9.3 [5], mtpaint
3.4 [13], ViewNoir 1.4 [20], gnash 0.8.11 [7], OpenJpeg 1.5.2 [14], Display
6.5.2-9 [9], and Wireshark-1.8.6 [22]. CP was able to successfully generate
patches that eliminated the errors, in five cases demonstrating the ability to trans-
fer patches from multiple donors (see Section 7.4).

For all of the applications except Wireshark-1.4.14 (which uses Wireshark 1.8),
CP successfully excises code from an independently developed alien donor and
successfully implants the code into the recipient. The ability of CP to translate
the check from the donor name space and data structures into the name space
and data structures of the recipient is critical to the success of many transfers.
Wireshark-1.4.14 demonstrates the ability of CP to deliver targeted updates that
eliminate specific errors while leaving the behavior and functionality of the
recipient otherwise intact.

7.1.4 Contributions

This paper makes the following contributions:

• Basic Concept: CP automatically eliminates software errors by identify-
ing and transferring correct code from donor applications into incorrect
recipient applications. In this way CP can automatically harness the com-
bined knowledge and labor invested across multiple software systems to
improve each application.
To the best of our knowledge, CP is the first system to automatically trans-
fer code across multiple applications.

• Name Translation: One of the major challenges in code transfer is trans-
lating the names of values from the name space of the donor into the name

85
Approved for public release; distribution unlimited.

space of the recipient. CP shows how to use instrumented executions of
the donor and recipient to meet this name translation challenge.

• Data Structure Translation: Another major code transfer challenge is
translating between different data representations. CP shows how to use in-
strumented executions and data structure traversals to meet this challenge
— it takes code that accesses values stored in the data structures of the
donor and produces code that accesses values stored in the data structures
of the recipient.

• Donor Code Identification: It presents a mechanism to identify correct
code in donor applications for transfer into recipient applications. CP uses
two instrumented executions of the donor to automatically identify the
correct code to transfer into the recipient: one on the seed input and one
on the error-triggering input (which the donor, but not the recipient, can
successfully process). A comparison of the paths that these two inputs
take through the donor enables CP to isolate a single check (present in the
donor but missing in the recipient) that eliminates the error.

• Insertion Point Identification: CP automatically identifies appropriate
check insertion points within the recipient at which 1) the values needed to
express the transferred check computation are available as valid program
expressions in the name space of the recipient and 2) the transferred check
will not affect observed computations unrelated to the error.

• Experimental Results: We present experimental results that characterize
the ability of CP to eliminate ten otherwise fatal errors in seven recipient
applications by transferring correct code from seven donor applications.
For all of the 10 possible donor/recipient pairs, CP was able to obtain a
successful validated transfer that eliminated the error.

7.2 Example

We next present an example that illustrates how CP automatically patches an
integer overflow error in CWebP, the Google conversion program for the WepP
image format.

Figure 33 presents (simplified) CWebP source code that contains an integer
overflow error. CWebP uses the libjpeg library to read JPG images before con-
verting them to the CWebP format. It uses the ReadJPEG function to parse
the JPG files. There is a potential overflow at line 9, where CWebP calculates

86
Approved for public release; distribution unlimited.

1 int ReadJPEG(...) {
2 ...
3 width = dinfo.output_width;
4 height = dinfo.output_height;

5 stride = dinfo.output_width *
6 dinfo.output_components *
7 sizeof(*rgb);
8 /* the overflow error */
9 rgb = (uint8_t*)malloc(stride * height);

10 if (rgb == NULL) {
11 goto End;
12 }
13 ...
14 }

Figure 33: (Simplified) CWebP Overflow Error

the size of the allocated image as stride * height, where stride is: width * out-
put_components * sizeof(rgb).

On a 32-bit machine, inputs with large width and height fields can cause the
image buffer size calculation at line 9 to overflow. In this case CWebP allocates
an image buffer that is smaller than required and eventually writes beyond the
end of the allocated buffer.

Error Discovery: In our example, CP works with seed and error-triggering in-
puts identified by the DIODE integer-overflow discovery tool, which performs
a directed search on the input space to discover inputs that trigger integer over-
flow errors at memory allocation sites [52]. In the error-triggering input in our
example, the JPG height field is 62848 and the width field is 23200.

Donor Selection: CP next searches a database of applications that process JPG
files to find candidate donor applications that successfully process both the seed
and the error-triggering inputs. In our example, CP determines that the FEH
image viewer application processes both inputs successfully.

Candidate Check Discovery: CP next runs an instrumented version of the FEH
donor application on the two inputs. At each conditional branch that is influ-
enced by the relevant input field values (in this case the JPG height and width
fields), it records the direction taken at the branch and a symbolic expression for
the value of the branch condition. The free variables in these expressions
represent the values of input fields.

CP operates under the hypothesis that one of the FEH branch conditions imple-
ments a check designed to detect inputs that trigger the overflow. Under this

87
Approved for public release; distribution unlimited.

1 # define IMAGE_DIMENSIONS_OK(w, h) \
2 (((w) > 0) && ((h) > 0) && \

3 ((unsigned long long)(w) * \
4 (unsigned long long)(h) <= (1ULL << 29) - 1))
5
6 char load(...) {
7 int w, h;
8 struct jpeg_decompress_struct cinfo;
9 struct ImLib_JPEG_error_mgr jerr;

10 FILE *f;
11 ...
12 if (...) {
13 ...
14 im->w = w = cinfo.output_width;
15 im->h = h = cinfo.output_height;

16 /* Candidate check condition */
17 if ((cinfo.rec_outbuf_height > 16) ||
18 (cinfo.output_components <= 0) ||
19 !IMAGE_DIMENSIONS_OK(w, h))
20 {
21 // Clean up and quit
22 ...
23 return 0;
24 }
25 }
26 }

Figure 34: (Simplified) FEH Overflow Check

hypothesis, the seed input and error-triggering inputs take different directions
at this branch (because the error-triggering input would satisfy the check and
the seed input would not). CP therefore considers the check for each branch
at which the seed and error-triggering inputs take different directions to be a
candidate check.

In our example, CP discovers a candidate check in the imlib library that FEH
uses to load and process JPG files. Figure 34 presents (simplified) source code
for this check.3 The macro IMAGE_DIMENSIONS_OK (defined on lines
1-4, invoked on line 19), performs an overflow check on the computation of out-
put_width * output_height. This check enables FEH to detect and correctly
process the error-triggering input without overflow.

Candidate Check Excision: The FEH check is expressed in terms of the FEH
data structures. The next step is to translate the check from this form into an

3 Because CP operates on binaries, information about the source code for the donor patch
is, in general, not available. So that we can present the FEH source code for the check in our
example, we used the symbolic debugging information in FEH to manually locate the source
code for the check.

88
Approved for public release; distribution unlimited.

define IMAGE_DIMENSIONS_OK(w, h) \
((unsigned long long)(w) * (unsigned long long)(h) <= (1ULL << 29) - 1))

<=

*

Add(Width(BvOr(Constant(0x0),Width(Shl(Widt
h(BvAnd(Variable("/start_frame/content/

height"),Constant(0xff)),
Constant(32)),Constant(0x8)), Constant(32))),
Constant(32)),Width(BvOr(Constant(0x0),Width

(UShr(Width(BvAnd(Variable("/start_frame/
content/height"),Constant(0xff00)),

Constant(32)),Constant(0x8)), Constant(32))),

Add(Width(BvOr(Constant(0x0),Width(Shl(Widt
h(BvAnd(Variable("/start_frame/content/

width"),Constant(0xff)),
Constant(32)),Constant(0x8)), Constant(32))),
Constant(32)),Width(BvOr(Constant(0x0),Width

(UShr(Width(BvAnd(Variable("/start_frame/
content/width"),Constant(0xff00)),

Constant(32)),Constant(0x8)), Constant(32))),
((unsigned long long)(w) ((unsigned long long)(h) (1ULL << 29) - 1) Constant(32))) Constant(32))), Constant(32))),

DONOR

<= RECIPIENT

*
dinfo->image_height dinfo_image_width

if ((((unsigned long) ((dinfo.output_height) *

536870911

Add(BvOr(Constant(0x00),Shl(Width(BvAnd(Va
riable('/start_frame/content/

height'),Constant(0xFF)),Constant(32)),Consta
nt(8))),

BvOr(Constant(0x00),Width(UShr(BvAnd(Varia
ble('/start_frame/content/

height'),Constant(0xFF00)),Constant(8)),Const
ant(32))))", 32

Add(BvOr(Constant(0x00),Shl(Width(BvAnd(Va
riable('/start_frame/content/

width'),Constant(0xFF)),Constant(32)),Constan
t(8))),

BvOr(Constant(0x00),Width(UShr(BvAnd(Varia
ble('/start_frame/content/

width'),Constant(0xFF00)),Constant(8)),Consta
nt(32))))", 32,

((unsigned long) (dinfo.output_width)))) <= 536870911))• dinfo.output_image dinfo.output_width

Figure 35: Patch Transfer

application-independent form that expresses the check as a function of the input
bytes that determine its value. This translation uses an instrumented execution
of the donor to dynamically track the flow of input bytes through program. CP
uses this instrumentation to obtain symbolic expressions, in terms of the input
bytes, for relevant expressions that the application computes. In our example the
translated application-independent symbolic expression for the check is:
ULessEqual(32,Shrink(32,Mul(64,Shrink(32,Div(32,BvOr(64,Shl(64,
ToSize(64,SShr(32,Sub(32,Add(32,Constant(8),Shl(32,Add(32,Shl
(32,ToSize(32,BvAnd(16,HachField(16,’/start_frame/content/height’),
Constant(0xFF))),Constant(8)),ToSize(32,UShr(32,BvAnd(16,HachField(16,
’/start_frame/content/height’),Constant(0xFF00)),Constant(8)))),
Constant(3))),Constant(1)),Constant(31))),Constant(32)),ToSize(64,
Sub(32,Add(32,Constant(8),Shl(32,Add(32,Shl(32,ToSize(32,BvAnd(16,
HachField(16,’/start_frame/content/height’),Constant(0xFF))),Constant(8)),
ToSize(32,UShr(32,BvAnd(16,HachField(16,’/start_frame/content/height’),
Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)))),Constant(8))),
Shrink(32,Div(32,BvOr(64,Shl(64,ToSize(64,SShr(32,Sub(32,Add(32,
Constant(8),Shl(32,Add(32,Shl(32,ToSize(32,BvAnd(16,HachField(16,
’/start_frame/content/width’),Constant(0xFF))),Constant(8)),
ToSize(32,UShr(32,BvAnd(16,HachField(16,’/start_frame/content/width’),
Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)),
Constant(31))),Constant(32)),ToSize(64,Sub(32,Add(32,Constant(8),
Shl(32,Add(32,Shl(32,ToSize(32,BvAnd(16,HachField(16,
’/start_frame/content/width’),Constant(0xFF))),Constant(8)),
ToSize(32,UShr(32,BvAnd(16,HachField(16,’/start_frame/content/width’),
Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)))),
Constant(8))))),Constant(536870911))

There are two primary reasons for the complexity of this excised check. First,
it correctly captures how FEH manipulates the input fields to convert from big-
endian (in the input file) to little-endian (in the FEH application) representation.
The excised check correctly captures the shifts and masks that are performed as
part of this conversion. Second, FEH casts the 16-bit input fields to unsigned
long long integers before it performs the overflow check. The excised check

Approved for public release; distribution unlimited
91

89
Approved for public release; distribution unlimited.

properly reflects these operand length manipulations.

Patch Transfer: The next step is to insert the check into the recipient CWebP
application. There are two related challenges: 1) finding a successful insertion
point for the check and 2) translating the check from the application-independent
representation into the data representation of the recipient CWebP application.
Note that this translation must find CWebP data structures that contain the rele-
vant input field values and express the check in terms of these data structures.

Candidate Patch Insertion Point Identification: CP runs CWebP (the recipi-
ent) on the seed input. At each function the CP instrumentation records the input
fields that the function reads. CP identifies program points at which the function
has read all of the input fields as potential patch insertion points. In our example,
CP recognizes that the ReadJPEG function has read both the input JPG width
and height fields after line 4 in Figure 33. It therefore identifies the point after
this statement as a candidate insertion point. The next step is to use the variables
and data structures available at this point to express the check.

Patch Translation: To translate the patch into the recipient, CP first finds the
relevant input fields as stored in the variables and data structures of the recipient.
It then determines how to use these fields to express the check.

To find the values, CP uses the debugging information from the recipient binary
to identify the local and global variables available at that candidate insertion
point. Using these variables as roots, it traverses the data structures to find mem-
ory locations that store relevant input fields or values computed from relevant
inputs fields and constants. As part of this traversal it also records expressions
(in the name space of the recipient) that evaluate to each of the input fields or
input field expressions. In our example CP determines that dinfo.height contains
the JPG height input field and dinfo.width contains the JPG width input field.

The next step is to use the extracted recipient expressions to express the ex-
tracted check in the name space of the recipient. CP recursively processes the
application-independent expression tree to find subtrees that always evaluate to
the same value as one of the extracted recipient expressions. CP uses an SMT
solver to determine this equivalence (see Section 7.3). In our example, CP pro-
duces the following translated check, which it inserts after line 4 in Figure 33:
if (!((unsigned long long)dinfo.output_height *

(unsigned long long)dinfo.output_width)<=536870911)) {
exit(-1);

}

90
Approved for public release; distribution unlimited.

Note that CP was able to successfully convert the complex application-
independent excised check into this simple form — the SMT solver detects that
CWebP and FEH, even though developed independently, perform semanti-
cally equivalent endianess conversions, shifts, and masks on the input fields. CP
therefore realizes that the input fields are available in the same format in both
the CWebP and FEH internal data structures, enabling CP to generate a simple
patch that accesses the CWebP data structures directly with no complex format
conversion. The generated patch evaluates the check and, if the input fails the
check, exits the application. The rationale is to exit the application before the
integer overflow (and any ensuing errors or vulnerabilities) can occur.

Multiple Patch Insertion Points: For CWebP, CP identifies 38 candidate inser-
tion points. 2 of these points are unstable — in some executions of the point, the
generated expressions reference values other than the desired JPEG width and
height input fields. To avoid perturbing computations not related to the error, CP
filters out these unstable points. CP then sorts the remaining generated patches
by size and attempts to validate the patches in that order. In our example the
above patch is the first patch that CP tries (and this patch validates).

Patch Validation: Finally, CP rebuilds CWebP, which now includes the gen-
erated patch, and subjects the patch to a number of tests. First, it ensures the
compilation process finished correctly. Second, it executes the patched version of
CWebP on the error-triggering input and checks that the input no longer triggers
the error (CP runs CWebP under Valgrind memcheck to detect any errors that do
not manifest in crashes). Third, it runs a regression test that compares the output
of the patched application to the output of the original application, on a regres-
sion suite of inputs that the application is known to process correctly. Fourth,
CP runs the patched version of the application through the DIODE error discov-
ery tool to determine if DIODE can generate new error-triggering inputs. In our
example DIODE finds no new error-trigging inputs — if it had, CP would have
rerun the entire patch discovery and generation process, patching the discovered
errors, until DIODE discovered no new errors. The end result, in this example, is
a version of CWebP that contains a check that completely eliminates the integer
overflow error.

91
Approved for public release; distribution unlimited.

Figure 36: High-level overview of CP’s components

7.3 Design and Implementation

We next discuss how CP deals with the many technical issues it must overcome
to successfully transfer code between applications. CP consists of approxi-
mately 10,000 lines of C (most of this code implements the taint and symbolic
expression tracking) and 4,000 lines of Python (code for rewriting donor expres-
sions into expressions that can be inserted into the recipient, code that generates
patches from the bitvector representation, code that interfaces with Z3, and the
code that manages the database of relevant experimental results). Figure 36
presents an overview of the CP components.

Donor Selection For each input format, CP works with a set of applications
that process that format. Given seed and error-triggering inputs, CP considers
applications that can successfully process both inputs as potential donors. Open
source repositories such as github can be a rich source of independently de-
veloped applications that process the same input formats. Different versions,
releases, or variants of the same application can also be good sources of patches
either for regression errors introduced during maintenance or to obtain targeted
updates for specific errors. Our set of benchmark donors includes both sources
of applications (Section 7.4).

Candidate Check Discovery and Excision To extract candidate checks from
donor applications, CP implements a fine-grained dynamic taint analysis built on
top of the Valgrind [47] binary analysis framework. Our analysis takes as input a
specified taint source, such as a file or a network connection, and marks all data
read from the taint source as tainted. Each input byte is assigned a unique label
and is tracked by the execution monitor as it propagates through the application.

Donor
Selection

Candidate
Check

Discovery

Check
Excision

Check
Insertion

Check
Translation

Patch
Validation

Donor
DB

Seed Input

Patch
Error

Trigerring
Input

92
Approved for public release; distribution unlimited.

Our analysis instruments arithmetic instructions (e.g., ADD, SUB), data move-
ment instructions (e.g., MOV, PUSH), and logic instructions (e.g., AND, XOR).
It also supports additional instrumentation to reconstruct the full symbolic ex-
pression of each computed value, which records how the application computes
the value from input bytes and constants.

CP can optionally work with only a specified subset of the input bytes. We call
this subset the relevant bytes. Working with properly identified relevant bytes
can often improve the efficiency of the analysis without hampering its ability to
find successful patches (because only a subset of the bytes are relevant to the
patch). In our experiments, CP identifies the relevant bytes as those input fields
that differ between the seed and error-triggering inputs.

CP uses Hachoir [8] to convert byte ranges into symbolic input fields. If Hachoir
does not support a particular input format or is otherwise unable to perform this
conversion, CP also supports a raw mode in which all input bytes are represented
as offsets. Raw mode is effective, for example, for closely related inputs gener-
ated by standard error-finding tools [52, 35, 55, 15].

Identify Candidate Checks: CP runs the dynamic taint analysis on the donor
application twice, once with the seed input and once with the error-triggering in-
put. For each execution, CP extracts the executed conditional branch instructions
and records which direction each execution of the branch takes. After filtering
out branches that are not affected by the relevant bytes, branches that take dif-
ferent directions are the candidate branches. CP proceeds under the assumption
that the condition associated with one of the candidate branches implements
the desired check. Starting with the first (in the program execution order) candi-
date branch, CP attempts to transfer each check in turn until a transferred check
successfully validates.

Check Excision: To obtain the application-independent form of the check, CP
reruns the application with additional instrumentation that enables CP to recon-
struct the full symbolic expression tree for the candidate check. This expression
tree records how the donor application computes the condition of the candidate
check from the input byte values and constants. Conceptually, CP generates a
symbolic record of all calculations that the application performs. To reduce the
volume of recorded information, CP only builds expression trees for calculations
that involve the relevant input bytes. This optimization substantially reduces the
volume of generated data.

93
Approved for public release; distribution unlimited.

A key challenge in transferring code between applications is translating between
the different data representations in the donor and recipient. Translating the
check into a symbolic expression over the input bytes performs the first half of
this translation — it translates the check out of the naming environment and data
structures of the donor into an application-independent representation.

Bit Manipulation Optimizations: As the symbolic expressions are recorded
during the instrumented execution of the donor, CP applies several optimizations
that reduce the size of the generated expressions. Among the most important of
these are optimizations that simplify expressions generated by bit manipulation
operations (such as shifts) that extract, align, or combine operands of subsequent
computations. Because such bit manipulation operations occur frequently (for
example, when the application extracts pieces of data read from the input or
because of SSE optimizations) in donor binaries, the rules significantly reduce
the size and complexity of the extracted symbolic expressions.

Figure 37 presents several rewrite rules that CP applies to simplify the sym-
bolic expressions that such operations generate. The first two rules simplify
symbolic expressions that extract the bottom or top 8-bit byte, respectively, of
a 16 bit value. Here Shl(8,E) represents an 8-bit left shift of the 16 bit value E;
ShrinkH(8,Shl(8,E)) converts the resulting 16 bit value into an 8 bit value by
extracting the top byte. One important consequence of these rules is that, by
eliminating discarded bytes from the symbolic representation, they can disentan-
gle bytes from adjacent input fields that were read into the same word as part of
the input process.

Note that the rules require the operand of the shift to be represented symboli-
cally as a concatenation of two 8-bit bytes (the operand E must be of the form
[b1, b2], where b1 and b2 are independent bytes). Potential other representations
that may appear as an operand include unified 16-bit values produced by addi-
tion or subtraction operations. CP does not further optimize the representation
of bit manipulation operations involving such unified operands as there is no
straightforward way to disentangle the two bytes of the unified operand.

The last two rules simplify symbolic expressions that start with a 16-bit value
composed of two 8-bit bytes, shift one of the bytes out of the value, then or
another byte into the position vacated by the shift. Here BvOrH(b1, Shr(8,E))
bitwise ors b1 into the top byte of the 16 bit value produced by Shr(8,E). The
result is a new 16 bit value. Once again, one of the benefits of these rules is that
they can eliminate bytes that would otherwise entangle unrelated input fields that

94
Approved for public release; distribution unlimited.

 E ≡ [b1,b2]

ShrinkH(8, Shl(8, E)) ⇒ b2

 E ≡ [b2,b3]

BvOrH(b1,Shr(8,E)) ⇒ [b1,b2]

 E ≡ [b1, b2]

ShrinkL(8, Shr(8, E)) ⇒ b1

 E ≡ [b2,b3]

BvOrL(b1,Shl(8,E)) ⇒ [b3,b1]

Figure 37: CP Rewrite Rules for Bit Manipulation Operations

appear adjacent in the input. Like the first two rules, the last two rules require the
initial 16-bit value to be represented symbolically as a concatenation of two 8-bit
values.

CP also implements similar rules for other combinations of operand sizes.
Specifically, there are similar rules for expressions that represent results of bit
manipulation operations involving combinations of 8, 16, 32, and 64 bit values.

Check Insertion To transfer the candidate check to an insertion point in the
recipient application, CP rewrites the check to access the input field values as
stored in variables and data structures available in the recipient.

Candidate Insertion Points: The first step is to find candidate insertion points –
program points at which a set of values computed from all of the input bytes in
the symbolic check expression are available as program expressions in the recip-
ient. CP runs an instrumented version of the recipient that tracks the flow of the
relevant input bytes through the application. Whenever the recipient evaluates
an expression that involves the relevant input bytes, CP records the symbolic
expression for the computed value. This symbolic expression records how the
recipient application computes the value as a function of the input bytes and
constants. Using these collected symbolic expressions, CP finds functions that
access a set of values computed from all of the input bytes in the check. It then
finds points within these functions at which the function has accessed all of these
values. These points are the set of candidate insertion points.

Unstable Points: In general, the application may execute a candidate insertion
point multiple times, potentially accessing different input bytes or even different
values not derived from the input bytes on different executions. Candidate inser-
tion points in multipurpose code such as libraries, for example, may execute with
different values when invoked from different parts of the computation. To mini-
mize the risk that the inserted check may affect a computation not related to the

95
Approved for public release; distribution unlimited.

error, CP filters out all points that access different values on different executions
(we call these points unstable points). The goal is choose the insertion point so
that the patch performs the check only when it is relevant to the error.

Paths to Relevant Values: CP next attempts to express the extracted symbolic
check in terms of the available variables and data structures at the remaining sta-
ble candidate insertion points. Given a candidate point, CP uses the debugging
information to find the set V of local and global variables available at that point.
Starting with these variables as roots, it then uses the debugging information to
traverse the data structures to find relevant values (values computed from rele-
vant fields and constants) stored in the data structures. As part of the traversal it
computes the data structure traversal paths that lead to these relevant values.

Figure 38 presents the traversal algorithm. Starting from a given variable or data
structure traversal path, the algorithm computes names that lead to reachablerelevant values. Each name has the form (p, E). Here p is a path through the
reachable data structures. Each path p starts at a variable v, then identifies a se-
quence of pointer dereferences and data structure field accesses that reaches the
relevant value. The symbolic expression E records how the program computed
the value from relevant input bytes.

For each variable v ∈ V , CP invokes the traverse algorithm and merges the re-
sulting sets of names. The algorithm recursively traverses the data structures of
the recipient program based on type signatures from the debugging informa-
tion. At line 15, it uses the debugging information to determine the type of the
path p. At line 16, it queries the symbolic tracking analysis results to obtain the
corresponding symbolic expression for the traversed path p.

Check Translation: The next step is to rewrite the application-independent form
of the check to use the variables and data structures of the recipient. Figure 39
presents the CP expression rewrite algorithm. The algorithm takes as input a
symbolic expression E and a set of names Names produced by the traversal
algorithm in Figure 38. It then uses the Names to translate E to use the available
variables and data structures at the candidate insertion point in the recipient.
E may take one of four possible forms, 1) an input field, 2) a constant c, 3) aunary operation expression (unaryop, E), or 4) a binary operation expression
(binop, E1, E2).

The algorithm first uses an SMT solver to try to find a single value in the recip-
ient with the same value as the expression E. In practice, CP is often able to

96
Approved for public release; distribution unlimited.

find single recipient values that are equivalent to very complex expressions E —
many of these symbolic expressions include complex shift and mask operations
that are also performed by the recipient as it reads the input. Otherwise the al-
gorithm decomposes the expression and attempts to rewrite each subexpression
recursively (lines 13-15 for expressions with unary operations, lines 16-19 for
expressions with binary operations). Constants (line 20) translate directly.

CP implements two optimizations that reduce the number of solver invocations:
1) if two symbolic expressions depend on different sets of input bytes, CP does
not invoke the solver and 2) CP caches all queries to the SMT solver so that it
can retrieve results from the cache for future duplicate queries. Together, these
two optimizations produce an order of magnitude reduction in the translation
times.

There are two ways for the Rewrite algorithm to fail. First, it does not attempt to
rearrange or reorder input bits as stored in the recipient data structures to match
the groups of input bits as accessed by the application-independent repre-
sentation of the check. So all of the required input bits may be available in the
recipient but not stored as a contiguous block in the order accessed by the check.
Second, it is possible for the function to access a value required to compute the
check, then overwrite the value before it reaches the insertion point. In this case
the value may be unavailable at the insertion point even though it was previously
accessed by the enclosing function.

If CP successfully constructs the new condition, CP generates a candidate patch
as an if statement inserted at the insertion point. In the current implementation,
CP transforms the constructed bitvector condition into a C expression as the
if condition (appropriately generating any casts, shifts, and masks required to
preserve the semantics of the transferred check). If the condition is satisfied, the
patch exits the application with an exit(-1).

Patch Validation CP first recompiles the patched recipient application. It then
executes the patched application on the bug-triggering input to verify that the
patch successfully eliminates the error for that input. CP also runs the patched
build on a set of regression suite inputs to validate that the patch does not break
the core functionality of the application. As appropriate, CP may also test other
error-triggering inputs or run additional error-finding tools (such as DIODE) to
determine if the patch leaves any residual errors behind. If so, CP recursively

97
Approved for public release; distribution unlimited.

1
1 1

1

1 Parameters:
2 p: A data structure path.
3 Subroutines:
4 Type(p) : The type of the path p.
5 Fields(t) : If t is a struct type, the set of fields in t.
6 Addr(p) : The address (at runtime) for the path p.
7 Expr(a) : The symbolic expression for the value
8 stored in the address a.
9 Visited(a) : A boolean that tracks whether the address

10 was already processed to avoid infinite recursion.
11 Returns:
12 A set of path, symbolic expression pairs.
13
14 Traverse(p) {
15 T ← Type(p)
16 E ← Expr(Addr(p))
17 if (Visited(Addr(p))) return 0/
18 else if (T is Pointer) return Traverse("(*"+p+")")
19 else if (T is Struct)
20 Names ← 0/
21 for f in Fields(T)
22 Names ← Names ∪ Traverse(p+"."+ f)
23 return Names
24 else if (E /= NIL) return {(p, E)}
25 return 0/
26 }

Figure 38: CP Data Structure Traversal Algorithm

1 Parameters:
2 E: A symbolic expression over input values.
3 Names: A set of available names.
4 Subroutines:
5 SolverEquiv(E1, E2): Query the SMT solver to determine
6 whether expressions E1 and E2 are equivalent.
7 Return:
8 Rewritten expression of E or NIL if failed
9

10 Rewrite(E, Names) {
11 for (p, Et) in Names
12 if (SolverEquiv(E,Et)) return p
13 if (E is of the form (unaryop,E1))
14 Et ← Rewrite(E1,Names)
15 if (Et /= NIL) return (unaryop,Et)
16 else if (E is of the form (binop, E1, E2))
17 Et ← Rewrite(E1,Names)
18 Et ←t Rewrite(E2,Names) t t

i2f (E /E=t NIL and /= NIL) return (binop,E ,E)
19 1 2 1 2
20 else if (E is Constant c) return c
21 return NIL
22 } Figure 39: CP Rewrite Algorithm

98
Approved for public release; distribution unlimited.

attempts to find and transfer patches that eliminate the residual errors.

7.4 Experimental Results

Recipient

Target

Donor

Generation
Time

Relevant
Branches

Flipped
Branches

Used
Checks

Candidate
Insertion Pts

Check
Size

CWebP 0.3.1 jpegdec.c:248 feh-2.9.3 4m 157 5 1 38 - 2 - 31 = 5 57 → 4 CWebP 0.3.1 jpegdec.c:248 mtpaint-3.40 4m 94 5 1 38 - 2 - 30 = 6 28 → 2
CWebP 0.3.1 jpegdec.c:248 viewnior-1.4 1m 137 1 1 38 - 2 - 31 = 5 111 → 12

Dillo 2.1 png.c@203 mtpaint-3.40 3m 29 [1,1] 2 16 - 1 - 8 = 7
16 - 1 - 9 = 6

[(18 → 1),(18 → 1)]

Dillo 2.1 png.c@203 feh-2.9.3 3m 120 [4,1] 2 16 - 1 - 9 = 6
16 - 1 - 9 = 6

[(76 → 8), (37 → 3)]

Dillo 2.1 png.c@203 viewnior-1.4 18m 117 1 1 16 - 1 - 9 = 6 79 → 12
Dillo 2.1 fltkimagebuf.cc@39 mtpaint-3.40 13m 29 [1,1] 2 22 - 1 - 10 = 11

22 - 1 - 11 = 10
[(18 → 1),(18 → 1)]

Dillo 2.1 fltkimagebuf.cc@39 feh-2.9.3 2m 120 4 1 22 - 1 - 11 = 10 76 → 9
Dillo 2.1 fltkimagebuf.cc@39 viewnior-1.4 9m 117 1 1 22 - 1 - 11 = 10 79 → 12

Display 6.5.2 xwindow.c@5619 viewnior-1.4 4m 142 6 1 74 - 5 - 60 = 9 55 → 14
Display 6.5.2 xwindow.c@5619 feh-2.9.3 4m 147 6 1 74 - 7 - 58 = 9 17 → 4
Display 6.5.2 display.c@4393 viewnior-1.4 4m 142 6 1 49 - 2 - 45 = 2 55 → 14
Display 6.5.2 display.c@4393 feh-2.9.3 4m 147 6 1 49 - 2 - 45 = 2 17 → 4

SwfPlay 0.5.5 jpeg_rgb_decoder.c@253 gnash 12m 264 7 1 43 - 3 - 35 = 5 53 → 12
SwfPlay 0.5.5 jpeg.c@192 gnash 18m 264 [1,1,3,3] 4 38 - 2 - 34 = 2

38 - 2 - 34 = 2
38 - 0 - 37 = 1
38 - 0 - 37 = 1

[(5 →1),(5 →1),
(4 →1),(3 →1)]

JasPer 1.9 jpg_dec.c:492 OpenJpeg 1.5.2 1m 63 19 1 18 - 1 - 16 = 1 188 → 3
gif2tiff 4.0.3 gif2tiff.c:355 Display 6.5.2-9 9m 9 2 1 2 - 1- 0 = 1 3 → 3

Wireshark 1.4.14 packet-dcp-etsi.c:258 Wireshark 1.8.6 4m 101 2 1 40 - 5 - 15 = 20 6 → 2

Figure 40: Summary of CP Experimental Results
We evaluate CP on three classes of errors — out of bounds access, integer over-
flow, and divide by zero errors. The two out of bounds access errors occur in
JasPer 1.9 [10] and gif2tiff 4.0.3 [11] and are triggered by JPEG2K (JasPer) and
gif (gif2tiff) images. OpenJPEG [14] and Display 6.5.2-9 [9] are the donors. We
use standard fuzzing techniques to obtain the seed and error-triggering inputs.

The seven integer overflow errors occur in four applications: CWebP 0.31 [3],
Dillo 2.1 [4], swfplay 0.55 [18], and Display 6.5.2-8 [9]. Two of these errors
were listed in the CVE database; one was first discovered by BuzzFuzz [35]; the
other four were, to the best of our knowledge, first discovered by DIODE [52].
The errors are triggered by JPG image files (CWebP), PNG image files (Dillo),
SWF video files (swfplay), and TIFF image files (Display). The donor applica-
tions include FEH-2.9.3 [5], mtpaint 3.4 [13], ViewNoir 1.4 [20], and 0.8.11 [7].
We use DIODE to obtain the seed and error-triggering inputs.

The two divide by zero errors occur in Wireshark-1.4.14 [22] and are triggered
by degenerate network packets with zero size fields. Wireshark-1.8.6 is the
donor — in this scenario the goal is to obtain a targeted update that eliminates

99
Approved for public release; distribution unlimited.

the error without the potential disruption of a full update to a later version. Start-
ing with an error-triggering input from the corresponding CVE report, we used
standard techniques to obtain a corresponding seed input that did not trigger the
error.

We obtained integer overflow errors from the DIODE project [52]. The buffer
overflow errors are reported as security vulnerabilities in the CVE database
(CVE-2012-3352,CVE-2013-4231). We selected donor applications by collect-
ing applications that successfully process the seed and error-triggering inputs.
We further filter any applications that use the same underlying library (and ver-
sion) to process inputs (e.g., we select only one donor application that uses lib-
jpeg to process jpeg images). For every class of errors, we try all combinations
of recipient-donor pairs that can process the same inputs.

Results Summary: Figure 40 summarizes the results of these experiments.
There is a row in the table for each combination of error and donor. The first
column (Recipient) identifies the recipient application that contains the error.
The second column (Target) identifies the source code file and line where the
vulnerability occurs. The third column (Donor) identifies the donor application.
The fourth column (Patch Time) presents the amount of time that CP required to
generate the patch.

The fifth column (Relevant Branches) presents the number of branches that de-
pend on relevant values. The sixth column (Flipped Branches) presents the num-
ber of branches that take different directions for the seed and error-triggering
inputs. Several entries are of the form [X1, ..., Xn]. These entries correspond to
errors with multiple error-triggering inputs. The first patch eliminates the error
for the first input but there is a residual error. Recursive CP executions transfer
patches to eliminate each remaining residual error, with an error eliminated per
patch transfer. In all cases the final sequence of patches completely eliminates
the exposed errors. For all four cases with multiple patches DIODE, running on
the previously patched version, automatically generates the additional error-
triggering inputs. The seventh column (Used Checks) presents the number of
checks that CP transferred to eliminate the error. In all of our experiments, the
transferred checks came from the first (in the execution order) flipped branch.
The eighth column (Candidate Insertion Points) contains entries of the form
X − Y − Z = W . Here X is the number of candidate insertion points, Y is the
number of unstable points (CP filters these points), Z is the number of insertion
points at which CP was unable to translate the patch (see Section 7.3), and W is

100
Approved for public release; distribution unlimited.

the number of points at which CP is able to insert a successfully translated patch.
The ninth column (Check Size) contains entries of the form X → Y . Here X is the

number of operations in the excised application-independent representation of
the check. Y is the number of operations in the translated check as it is inserted
into the recipient. We attribute the significant size reduction to the ability of the
CP Rewrite algorithm (Figure 39) to recognize complex expressions that are
semantically equivalent. The typical scenario is that CP recognizes that a
complex application-independent expression containing shifts and masks from
(for example) the endianess conversion is equivalent to a single variable or data
structure field in the recipient.

We next discuss several specific patches in more detail (see Section 7.2 for a
detailed example that illustrates how CP corrects an integer overflow error).

7.4.1 JasPer 1.9

JasPer 1.9 is an open-source image viewing and image processing utility. It is
specifically known for its implementation of the JPEG-2000 standard. JPEG-
2000 images may be composed of multiple tiles, with the number of tiles speci-
fied by a 16 bit field in the input file. JasPer contains an off-by-one error in the
code that processes JPEG-2000 tiles. When JasPer processes the tiles, it includes
code that is designed to check that the number of tiles actually present in the im-
age is less than or equal to the number specified in the input file. Unfortunately,
the check was miscoded — at jpc_dec.c:492, JasPer checks if the number of the
current tile is greater than (>) the specified number of tiles. The correct check is
a greater than or equal to (>=) check. The result is that JasPer can write tile data
beyond the end of the buffer allocated to hold that data.

The following correct check appears in OpenJPEG 1.5.2 at j2k.c:1394:4

if ((tileno < 0) || (tileno >= (cp->tw * cp->th))) { ... }

CP automatically locates the compiled version of this correct check in the Open-
JPEG binary and correctly transfers the check into JasPer at jpc_dec.c:492 as:
if (!(!(dec->numtiles <= sot->tileno))) { exit(-1); }

4 CP does not have access to the OpenJPEG 1.5.2 source code — it instead transfers the
check directly from the compiled binary. For presentation purposes, we used the debugging
information to manually locate this check in the OpenJPEG source code.

101
Approved for public release; distribution unlimited.

To generate this check, CP had to map tileno in OpenJPEG 1.5.2 to dec->numtiles
in JasPer and recognize that cp->tw * cp->th in OpenJPEG 1.5.2 has the same
value as sot->tileno in JasPer. This patch highlights CP’s data structure trans-
lation capabilities and its ability to recognize different expressions in different
applications that produce the same value. We note that the OpenJPEG tileno < 0
check is redundant — other constraints in both OpenJPEG and JasPer ensure that
tileno and dec->numtiles are always nonnegative.

7.4.2 gif2tiff

gif2tiff is a utility in the libtiff-4.0.3 library which converts gif images to the tif
format. gif2tiff is vulnerable to a buffer overflow attack when processing gif
images. gif2tiff iterates over the size of the LZW code size, which under the gif
specification should be limited to a size of 12. Without a check to constrain the
code size to 12, the loop over the code size in gif2tif.c:355 can be forced to
overwrite over a set of statically allocated buffers.

CP successfully created a patch for this error using ImageMagick-6.5.2-9 as the
donor. The transfered check appears in ImageMagick-6.5.2-9 as:
#define MaximumLZWBits 12
if (data_size > MaximumLZWBits)

ThrowBinaryException(CorruptImageError,
"CorruptImage",image.filename);

This check was translated into the following patch for gif2tiff (gif2tiff.c:357) as:
if (!(datasize <= 12)) {exit(-1);}

The check correctly enforces the gif specification that the code size should have
a maximum size of 12 and protects gif2tiff from the buffer overflow vulnerabil-
ity.

7.4.3 Wireshark

Wireshark is a popular open-source packet analyzer. It is used for a variety of
networking tasks such as network analysis, network troubleshooting and proto-
col development. Wireshark 1.4.14 contains a divide by zero error at packet-dcp-
etsi.c:276 in code that processes DCP ETSI packets.

102
Approved for public release; distribution unlimited.

The following check, which appears in a later version of Wireshark (1.8.6) and
checks that the length of the packet payload is not zero before attempting to
further process the packet, eliminates this error:
if (real_len) ...

Recognizing that real_len and plen contain the same input fields (the different
names reflect the substantial reengineering between the two versions), CP inserts
the check into Wireshark 1.4.14 at packet-dcp-etsi.c:258 as:
if (!(!(plen == 0))) { exit(-1); }

Empirically, returning zero as the result of divide by zero errors often enables the
application to continue to execute productively [44]. We therefore implemented
an alternate strategy that returns 0 if the check fires rather than exiting. Our
results and manual analysis indicate that this strategy delivers correct continued
execution for both of the Wireshark divide by zero errors.

7.4.4 Discussion

The patches we present above are, in general, representative of the remaining
patches (our CP technical report presents these remaining patches [54]). Like the
JasPer patch, 10 of the remaining 18 patches access the stored field values via
pointers. This fact highlights the critical role that the CP data structure traversal
and rewrite algorithms play in enabling the data structure translations required
for successful transfers. As the numbers in Figure 40 indicate, the CP rewrite
algorithm is effective at generating compact readable patches — like the patches
we present above, they are all expressible in at most several lines of code.

Our manual evaluation of the patches indicates that 1) they all completely elimi-
nate the target error and 2) they do not affect computations unrelated to the error.
We attribute this success to three factors: 1) the developers of the donor applica-
tions were able to write code that correctly handled the case responsible for the
error in the recipient, 2) CP was able to locate and transfer the check that han-
dles this case, and 3) eliminating unstable points is an effective way to filter out
the many points that appear in multipurpose library code. The result is focused
patches that fire only when necessary to eliminate the target error.

The results also highlight several aspects of CP’s techniques. Most of the ap-
plications contain more than 100 checks that involve relevant input fields. The

103
Approved for public release; distribution unlimited.

ability of CP to find the single check (within these more than 100 checks) that
eliminates the error highlights the effectiveness of CP’s check identification tech-
nique (which uses flipped branches to isolate the relevant check). CP’s ability
to find effective patch insertion points among the many potential source code
locations highlights the effectiveness of CP’s insertion point location algorithm.

All of the transfers involve naming and/or data structure translations. In some
cases the translation could be accomplished via a simple variable renaming (if
the source code for the donor was available, which it may not be). In other
cases there is a more significant data structure translation that involves finding
values stored in different structures or accessed via pointers. Even though the
application-independent representation of the checks is typically quite complex,
CP’s Rewrite algorithm is very effective at finding small recipient representa-
tions of the check.

Given that programs often deploy different data representations, any general
code transfer system requires some data structure translation technique. CP’s
technique, which is based on representing values as functions of the input bytes,
then traversing the data structures to find desired values, would be equally effec-
tive for any approach that can establish a correspondence between executions of
the donor and recipient.

CP’s current data structure translation technique is effective at translating (poten-
tially quite complex) computations that can be expressed as single expressions.
Already this technique enables CP to eliminate significant errors in real-world
applications. Generalizing CP to support expressions with simple conditionals
would be relatively straightforward — augmenting CP’s data structure transla-
tion technique with a symbolic execution of the two branches would suffice. An
effective loop body identification and generalization technique would enable CP
to support loops.

104
Approved for public release; distribution unlimited.

8 Conclusion

Modern software projects contain so many defects, and the cost of correcting
defects remains so large, that projects typically ship with a long list of known but
uncorrected defects.

The CIDER project researched techniques to automate the process of discover-
ing, neutralizing and repairing software bugs and vulnerabilities. As part of this
goal, we build components of a continuous automatic improvement system that
can automatically search for errors and generate patches that repair the encoun-
tered errors. By removing the human from the loop, patch generation time can
be reduced, patch robustness improved, leading to fewer unpatched systems.

Our experimental results show that we have the building blocks for creating
continuous automatic improvement systems.

105
Approved for public release; distribution unlimited.

References

[1] Amazon mechanical turk. https://www.mturk.com/mturk/
welcome.

[2] Common vulnerabilities and exposures. http://cve.mitre.org/.

[3] Cwebp. https://developers.google.com/speed/webp/
docs/cwebp.

[4] Dillo. http://www.dillo.org/.

[5] Feh - a fast and light Imlib2-based image viewer. http://feh.
finalrewind.org/.

[6] Gimp. http://www.gimp.org/.

[7] Gnu gnash. https://www.gnu.org/software/gnash/.

[8] Hachoir. http://bitbucket.org/haypo/hachoir/wiki/Home.

[9] Imagemagick. http://www.imagemagick.org/script/index.
php.

[10] The jasper project home page. http://www.ece.uvic.ca/~frodo/
jasper/.

[11] Libtiff. http://www.remotesensing.org/libtiff/.

[12] The LLVM compiler infrastructure. http://www.llvm.org/.

[13] mtpaint. http://mtpaint.sourceforge.net/.

[14] Openjpeg. http://www.openjpeg.org.

[15] Peach fuzzing platform. http://peachfuzzer.com/.

[16] Picasa. http://picasa.google.com/.

[17] SPIKE fuzzing platform. http://www.immunitysec.com/
resources-freesoftware.shtml.

[18] Swfdec. http://swfdec.freedesktop.org/wiki/.

[19] Swftools. http://www.swftools.org/.

106
Approved for public release; distribution unlimited.

https://www.mturk.com/mturk/welcome
https://www.mturk.com/mturk/welcome
http://cve.mitre.org/
https://developers.google.com/speed/webp/docs/cwebp
https://developers.google.com/speed/webp/docs/cwebp
http://www.dillo.org/
http://feh.finalrewind.org/
http://feh.finalrewind.org/
http://www.gimp.org/
https://www.gnu.org/software/gnash/
http://bitbucket.org/haypo/hachoir/wiki/Home
http://www.imagemagick.org/script/index.php
http://www.imagemagick.org/script/index.php
http://www.ece.uvic.ca/%7Efrodo/jasper/
http://www.ece.uvic.ca/%7Efrodo/jasper/
http://www.remotesensing.org/libtiff/
http://www.llvm.org/
http://mtpaint.sourceforge.net/
http://www.openjpeg.org/
http://peachfuzzer.com/
http://picasa.google.com/
http://www.immunitysec.com/resources-freesoftware.shtml
http://www.immunitysec.com/resources-freesoftware.shtml
http://swfdec.freedesktop.org/wiki/
http://www.swftools.org/

[20] Viewnoir - the elegant image viewer. http://xsisqox.github.io/
Viewnior/.

[21] VLC media player. http://www.videolan.org/.

[22] Wireshark. https://www.wireshark.org/.

[23] Karen Ambrose, Albrecht Koppenhofer, and Faith Belanger. Horizontal gene
transfer of a bacterial insect toxin gene into the epichloe fungal symbionts
of grasses. Scientific Reports, 4, July 2014.

[24] Mona Attariyan and Jason Flinn. Automating configuration troubleshooting
with dynamic information flow analysis. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation, OSDI’10.
USENIX Association, 2010.

[25] Miriam Barlow. What Antimicrobial Resistance Has Taught Us About
Horizontal Gene Transfer. Methods in Molecular Biology, 532:397–411,
2009.

[26] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX conference on Operating systems design
and implementation, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008.
USENIX Association.

[27] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Daw-
son R Engler. EXE: Automatically generating inputs of death. ACM Trans-
actions on Information and System Security (TISSEC), 12(2):10, 2008.

[28] James Clause, Wanchun Li, and Alessandro Orso. Dytan: a generic dy-
namic taint analysis framework. In Proceedings of the 2007 international
symposium on Software testing and analysis, ISSTA ’07. ACM, 2007.

[29] Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang, and Marcus
Peinado. Bouncer: securing software by blocking bad input. In Proceedings
of twenty-first ACM SIGOPS symposium on Operating systems principles,
SOSP ’07. ACM, 2007.

[30] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong
Zhou, Lintao Zhang, and Paul Barham. Vigilante: end-to-end containment
of internet worms. In Proceedings of the twentieth ACM symposium on
Operating systems principles, SOSP ’05. ACM, 2005.

107
Approved for public release; distribution unlimited.

http://xsisqox.github.io/Viewnior/
http://xsisqox.github.io/Viewnior/
http://www.videolan.org/
https://www.wireshark.org/

[31] Olivier Crameri, Nikola Knezevic, Dejan Kostic, Ricardo Bianchini, and
Willy Zwaenepoel. Staged deployment in mirage, an integrated software
upgrade testing and distribution system. In ACM SIGOPS Operating Systems
Review, volume 41, pages 221–236. ACM, 2007.

[32] Weidong Cui, Marcus Peinado, and Helen J. Wang. Shieldgen: Automatic
data patch generation for unknown vulnerabilities with informed probing.
In Proceedings of 2007 IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2007.

[33] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In
Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis of
systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008.
Springer-Verlag.

[34] W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer overflow in
C/C++. In Proceedings of the 2012 International Conference on Software
Engineering, pages 760–770. IEEE Press, 2012.

[35] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed whitebox
fuzzing. In ICSE ’09: Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society, 2009.

[36] Patrice Godefroid, Michael Y Levin, and David Molnar. SAGE: Whitebox
fuzzing for security testing. Queue, 10(1):20, 2012.

[37] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. Au-
tomated concurrency-bug fixing. In OSDI, volume 12, pages 221–236,
2012.

[38] Mark A. Kay, Joseph C. Glorioso, and Luigi Naldini. Viral vectors for gene
therapy: the art of turning infectious agents into vehicles of therapeutics. Nat
Med, 7(1):33–40, January 2001.

[39] Patrick J. Keeling and Jeffrey D. Palmer. Horizontal gene transfer in eukary-
otic evolution. Nature Reviews Genetics, 9(8), 8 2008.

[40] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-
sensitive points-to analysis with heap cloning practical for the real world.
In Proceedings of the 2007 ACM SIGPLAN conference on Programming

108
Approved for public release; distribution unlimited.

language design and implementation, PLDI ’07, pages 278–289, New York,
NY, USA, 2007. ACM.

[41] Fan Long, Vijay Ganesh, Michael Carbin, Stelios Sidiroglou, and Martin
Rinard. Automatic input rectification. MIT-CSAIL-TR-2011-044.

[42] Fan Long and Martin Rinard. Staged Program Repair in SPR. Technical
Report MIT-CSAIL-TR-2015-008, 2015.

[43] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Martin Rinard.
Sound input filter generation for integer overflow errors. In Proceedings
of the 41st annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 439–452. ACM, 2014.

[44] Fan Long, Stelios Sidiroglou-Douskos, and Martin Rinard. Automatic
runtime error repair and containment via error shepherding. In Proceedings
of the 35th ACM SIGPLAN conference on Programming Language Design
and Implementation, PLDI ’14’. ACM, 2014.

[45] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. Parallelizing sequen-
tial programs with statistical accuracy tests. Technical Report MIT-CSAIL-
TR-2010-038, 2010.

[46] David Molnar, Xue Cong Li, and David A Wagner. Dynamic test generation
to find integer bugs in x86 binary Linux programs. In Proceedings of the
18th conference on USENIX security symposium, pages 67–82. USENIX
Association, 2009.

[47] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. PLDI ’07, 2007.

[48] James Newsome, David Brumley, and Dawn Xiaodong Song. Vulnerability-
specific execution filtering for exploit prevention on commodity software. In
NDSS, 2006.

[49] James Newsome and Dawn Song. Dynamic taint analysis: Automatic de-
tection, analysis, and signature generation of exploit attacks on commodity
software. In Proceedings of the Network and Distributed Systems Security
Symposium, 2005.

[50] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios
Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst,

109
Approved for public release; distribution unlimited.

and Martin Rinard. Automatically patching errors in deployed software.
SOSP ’09. ACM, 2009.

[51] Martin C. Rinard. Living in the comfort zone. In Proceedings of the
22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications, OOPSLA ’07. ACM, 2007.

[52] Stelios Sidiroglou, Eric Lahtinen, Fan Long, and Martin Rinard. Auto-
matic integer overflow discovery using goal-directed conditional branch
enforcement. In MIT CSAIL Technical Report, 2014.

[53] Stelios Sidiroglou-Douskos, Eli Davis, and Martin Rinard. Horizontal
code transfer via program fracture and recombination. Technical Report
MIT-CSAIL-TR-2015-012, 2015.

[54] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard.
Automatic error elimination by multi-application code transfer. Technical
Report MIT-CSAIL-TR-2015-013, 2015.

[55] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force
Vulnerability Discovery. Pearson Education, 2007.

[56] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability detection.
In Proceedings of the 31st IEEE Symposium on Security & Privacy (Oak-
land’10), 2010.

[57] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M.F. Kaashoek. Improving
integer security for systems with KINT. In Proceedings of the 10th USENIX
conference on Operating Systems Design and Implementation, pages 163–
177. USENIX Association, 2012.

[58] XiaoFeng Wang, Zhuowei Li, Jun Xu, Michael K. Reiter, Chongkyung
Kil, and Jong Youl Choi. Packet vaccine: black-box exploit detection and
signature generation. CCS ’06. ACM, 2006.

[59] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard.
2015. Automatic error elimination by horizontal code transfer across
multiple applications. PLDI 2015.

110
Approved for public release; distribution unlimited.

	Section Page
	Figure Page
	Table Page
	1 Summary
	2 Methods, Assumptions and Procedures
	3 Introduction
	• Vulnerability Discovery
	• Vulnerability Isolation and Neutralization
	• Vulnerability Repair
	3.1 Vulnerability Discovery
	3.2 Vulnerability Isolation and Neutralization
	3.3 Repair

	4 Automatic Input Rectification
	4.1 Input Rectification
	4.2 Potential Advantages of Automatic Input Rectification
	4.3 The Input Rectification Technique
	4.4 Nested Fields in Input Files
	4.5 Key Questions
	4.6 Understanding Rectification Effects
	4.7 Contributions
	4.8 Motivating Example
	4.9 Design
	4.9.1 Input Parser
	4.9.2 Execution Monitor
	4.9.3 Learning Engine
	4.9.4 Input Rectifier

	4.10 Implementation
	4.11 Quantitative Evaluation
	4.11.1 Nullifying Vulnerabilities
	4.11.2 Data Loss
	4.11.3 Size of Training Input Set
	4.11.4 Overhead

	5 Sound Input Filter Generation
	5.1 Static Analysis
	5.2 SIFT Usage Model
	5.3 Experimental Results
	5.4 Contributions
	5.5 Example
	5.6 Static Analysis
	5.7 Implementation
	5.8 Experimental Results
	5.8.1 Methodology
	5.8.2 Analysis and Filter Evaluation
	5.8.3 Vulnerability Case Studies
	5.8.4 Discussion

	6 DIODE
	6.1.1 DIODE
	6.1.2 Experimental Results
	6.1.3 Engineering Challenges and Solutions
	6.1.4 DIODE and Multi-Application Code Transfer
	6.1.5 Continuous Automatic Improvement
	6.1.6 Contributions
	6.2 Goal-Directed Conditional Branch Enforcement Algorithm
	6.2.1 Core Language
	6.2.2 Operational Semantics
	6.2.3 Algorithm
	6.2.4 System Design and Implementation
	6.2.5 Target Site Identification
	6.2.6 Target and Branch Constraint Extraction
	6.2.7 Target Constraint Solution
	6.2.8 Test Input Generation
	6.2.9 Goal-Directed Branch Enforcement
	6.2.10 Error Detection
	6.2.11 Evaluation
	6.2.12 Benchmark Selection
	6.2.13 Target Site Classification
	6.2.14 Overflow Characteristics
	6.2.15 Blocking Checks
	6.2.16 Inputs That Satisfy Target Constraint Alone
	6.2.17 Target and Enforced Branch Success Rate

	7 CodePhage
	7.1 The Code Phage (CP) Code Transfer System
	7.1.1 Usage Scenarios
	7.1.2 Scope
	7.1.3 Experimental Results
	7.1.4 Contributions

	7.2 Example
	7.3 Design and Implementation
	7.4 Experimental Results
	7.4.1 JasPer 1.9
	7.4.2 gif2tiff
	7.4.3 Wireshark
	7.4.4 Discussion

	8 Conclusion
	References
	CoverPage.pdf
	afrl-rY-wp-tR-2015-0183

	SF298.pdf
	REPORT DOCUMENTATION PAGE

